Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
- URL: http://arxiv.org/abs/2405.14239v1
- Date: Thu, 23 May 2024 07:18:08 GMT
- Title: Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
- Authors: Mohammed Baharoon, Jonathan Klein, Dominik L. Michels,
- Abstract summary: We present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features.
Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue.
- Score: 6.990891188823598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-S/16 on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. On https://github.com/MohammedSB/Harmony our code is publicly available.
Related papers
- Language-Driven Visual Consensus for Zero-Shot Semantic Segmentation [114.72734384299476]
We propose a Language-Driven Visual Consensus (LDVC) approach, fostering improved alignment of semantic and visual information.
We leverage class embeddings as anchors due to their discrete and abstract nature, steering vision features toward class embeddings.
Our approach significantly boosts the capacity of segmentation models for unseen classes.
arXiv Detail & Related papers (2024-03-13T11:23:55Z) - Heuristic Vision Pre-Training with Self-Supervised and Supervised
Multi-Task Learning [0.0]
We propose a novel pre-training framework by adopting both self-supervised and supervised visual pre-text tasks in a multi-task manner.
Results show that our pre-trained models can deliver results on par with or better than state-of-the-art (SOTA) results on multiple visual tasks.
arXiv Detail & Related papers (2023-10-11T14:06:04Z) - Robust Representation Learning by Clustering with Bisimulation Metrics
for Visual Reinforcement Learning with Distractions [9.088460902782547]
Clustering with Bisimulation Metrics (CBM) learns robust representations by grouping visual observations in the latent space.
CBM alternates between two steps: (1) grouping observations by measuring their bisimulation distances to the learned prototypes; (2) learning a set of prototypes according to the current cluster assignments.
Experiments demonstrate that CBM significantly improves the sample efficiency of popular visual RL algorithms.
arXiv Detail & Related papers (2023-02-12T13:27:34Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - SLIP: Self-supervision meets Language-Image Pre-training [79.53764315471543]
We study whether self-supervised learning can aid in the use of language supervision for visual representation learning.
We introduce SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training.
We find that SLIP enjoys the best of both worlds: better performance than self-supervision and language supervision.
arXiv Detail & Related papers (2021-12-23T18:07:13Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
We introduce a weakly supervised contrastive learning framework (WCL) to tackle this issue.
WCL achieves 65% and 72% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.
arXiv Detail & Related papers (2021-10-10T12:03:52Z) - Mutual Contrastive Learning for Visual Representation Learning [1.9355744690301404]
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning.
Benefiting from MCL, each model can learn extra contrastive knowledge from others, leading to more meaningful feature representations.
Experimental results on supervised and self-supervised image classification, transfer learning and few-shot learning show that MCL can lead to consistent performance gains.
arXiv Detail & Related papers (2021-04-26T13:32:33Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.