M2ANET: Mobile Malaria Attention Network for efficient classification of plasmodium parasites in blood cells
- URL: http://arxiv.org/abs/2405.14242v1
- Date: Thu, 23 May 2024 07:22:33 GMT
- Title: M2ANET: Mobile Malaria Attention Network for efficient classification of plasmodium parasites in blood cells
- Authors: Salam Ahmed Ali, Peshraw Salam Abdulqadir, Shan Ali Abdullah, Haruna Yunusa,
- Abstract summary: Malaria is a life-threatening infectious disease caused by Plasmodium parasites, which poses a significant public health challenge worldwide.
Deep learning techniques have demonstrated remarkable success in medical image analysis tasks, offering promising avenues for improving diagnostic accuracy.
We present M2ANET (Mobile Malaria Attention Network), a hybrid mobile model for efficient classification of plasmodium parasites in blood cell images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malaria is a life-threatening infectious disease caused by Plasmodium parasites, which poses a significant public health challenge worldwide, particularly in tropical and subtropical regions. Timely and accurate detection of malaria parasites in blood cells is crucial for effective treatment and control of the disease. In recent years, deep learning techniques have demonstrated remarkable success in medical image analysis tasks, offering promising avenues for improving diagnostic accuracy, with limited studies on hybrid mobile models due to the complexity of combining two distinct models and the significant memory demand of self-attention mechanism especially for edge devices. In this study, we explore the potential of designing a hybrid mobile model for efficient classification of plasmodium parasites in blood cell images. Therefore, we present M2ANET (Mobile Malaria Attention Network). The model integrates MBConv3 (MobileNetV3 blocks) for efficient capturing of local feature extractions within blood cell images and a modified global-MHSA (multi-head self-attention) mechanism in the latter stages of the network for capturing global context. Through extensive experimentation on benchmark, we demonstrate that M2ANET outperforms some state-of-the-art lightweight and mobile networks in terms of both accuracy and efficiency. Moreover, we discuss the potential implications of M2ANET in advancing malaria diagnosis and treatment, highlighting its suitability for deployment in resource-constrained healthcare settings. The development of M2ANET represents a significant advancement in the pursuit of efficient and accurate malaria detection, with broader implications for medical image analysis and global healthcare initiatives.
Related papers
- Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
We introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network.
Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity.
This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training.
arXiv Detail & Related papers (2024-07-25T08:22:30Z) - Malaria Cell Detection Using Deep Neural Networks [1.1237179306040028]
Malaria remains one of the most pressing public health concerns globally.
Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive.
This project aims to automate the detection of malaria-infected cells using a deep learning approach.
arXiv Detail & Related papers (2024-06-28T15:44:55Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM)
Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images.
These methods need annotated images that show cells affected by malaria parasites and their life stages.
Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM)
arXiv Detail & Related papers (2024-02-16T06:57:03Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - End-to-end Malaria Diagnosis and 3D Cell Rendering with Deep Learning [0.0]
Malaria is a parasitic infection that poses a significant burden on global health.
It kills one child every 30 seconds and over one million people annually.
The current gold standard for diagnosing malaria requires microscopes, reagents, and other equipment that most patients of low socioeconomic brackets do not have access to.
arXiv Detail & Related papers (2021-07-08T08:13:11Z) - A Dataset and Benchmark for Malaria Life-Cycle Classification in Thin
Blood Smear Images [7.113350536579545]
Malaria microscopy, microscopic examination of stained blood slides to detect parasite Plasmodium, is considered to be a gold-standard for detecting malaria.
We propose to create a deep learning-based method to automatically detect (localize) the plasmodium parasites in the photograph of stained film.
To facilitate the research in machine learning-based malaria microscopy, we introduce a new large scale microscopic image malaria dataset.
arXiv Detail & Related papers (2021-02-17T11:44:52Z) - Localization of Malaria Parasites and White Blood Cells in Thick Blood
Smears [5.36646793661301]
This study presents an end-to-end approach for localisation and count of malaria parasites and white blood cells (WBCs)
On a dataset of slices of images of thick blood smears, we build models to analyse the obtained digital images.
Preliminary results show that our deep learning approach reliably detects and returns a count of malaria parasites and WBCs.
arXiv Detail & Related papers (2020-12-03T15:14:38Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
Malaria is one of the deadliest diseases in today world which causes thousands of deaths per year.
The parasites responsible for malaria are scientifically known as Plasmodium which infects the red blood cells in human beings.
The diagnosis of malaria requires identification and manual counting of parasitized cells by medical practitioners in microscopic blood smears.
arXiv Detail & Related papers (2020-06-17T13:00:30Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.