Malaria Cell Detection Using Deep Neural Networks
- URL: http://arxiv.org/abs/2406.20005v1
- Date: Fri, 28 Jun 2024 15:44:55 GMT
- Title: Malaria Cell Detection Using Deep Neural Networks
- Authors: Saurabh Sawant, Anurag Singh,
- Abstract summary: Malaria remains one of the most pressing public health concerns globally.
Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive.
This project aims to automate the detection of malaria-infected cells using a deep learning approach.
- Score: 1.1237179306040028
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Malaria remains one of the most pressing public health concerns globally, causing significant morbidity and mortality, especially in sub-Saharan Africa. Rapid and accurate diagnosis is crucial for effective treatment and disease management. Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive and require significant expertise, which may not be readily available in resource-limited settings. This project aims to automate the detection of malaria-infected cells using a deep learning approach. We employed a convolutional neural network (CNN) based on the ResNet50 architecture, leveraging transfer learning to enhance performance. The Malaria Cell Images Dataset from Kaggle, containing 27,558 images categorized into infected and uninfected cells, was used for training and evaluation. Our model demonstrated high accuracy, precision, and recall, indicating its potential as a reliable tool for assisting in malaria diagnosis. Additionally, a web application was developed using Streamlit to allow users to upload cell images and receive predictions about malaria infection, making the technology accessible and user-friendly. This paper provides a comprehensive overview of the methodology, experiments, and results, highlighting the effectiveness of deep learning in medical image analysis.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Automated Web-Based Malaria Detection System with Machine Learning and Deep Learning Techniques [0.0]
Malaria parasites pose a significant global health burden, causing widespread suffering and mortality.
We formulate a deep learning technique for malaria-infected cell classification using traditional CNNs and transfer learning models.
The system can be accessed through a web interface, where users can upload blood smear images for malaria detection.
arXiv Detail & Related papers (2024-06-27T16:50:36Z) - M2ANET: Mobile Malaria Attention Network for efficient classification of plasmodium parasites in blood cells [0.0]
Malaria is a life-threatening infectious disease caused by Plasmodium parasites, which poses a significant public health challenge worldwide.
Deep learning techniques have demonstrated remarkable success in medical image analysis tasks, offering promising avenues for improving diagnostic accuracy.
We present M2ANET (Mobile Malaria Attention Network), a hybrid mobile model for efficient classification of plasmodium parasites in blood cell images.
arXiv Detail & Related papers (2024-05-23T07:22:33Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM)
Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images.
These methods need annotated images that show cells affected by malaria parasites and their life stages.
Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM)
arXiv Detail & Related papers (2024-02-16T06:57:03Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
This research paper focuses on Acute Lymphoblastic Leukemia (ALL), a form of blood cancer prevalent in children and teenagers.
It proposes an automated detection approach using computer-aided diagnostic (CAD) models, leveraging deep learning techniques.
The proposed method achieved an impressive 98.38% accuracy, outperforming other tested models.
arXiv Detail & Related papers (2023-12-01T10:37:02Z) - COVID-Net USPro: An Open-Source Explainable Few-Shot Deep Prototypical
Network to Monitor and Detect COVID-19 Infection from Point-of-Care
Ultrasound Images [66.63200823918429]
COVID-Net USPro monitors and detects COVID-19 positive cases with high precision and recall from minimal ultrasound images.
The network achieves 99.65% overall accuracy, 99.7% recall and 99.67% precision for COVID-19 positive cases when trained with only 5 shots.
arXiv Detail & Related papers (2023-01-04T16:05:51Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - End-to-end Malaria Diagnosis and 3D Cell Rendering with Deep Learning [0.0]
Malaria is a parasitic infection that poses a significant burden on global health.
It kills one child every 30 seconds and over one million people annually.
The current gold standard for diagnosing malaria requires microscopes, reagents, and other equipment that most patients of low socioeconomic brackets do not have access to.
arXiv Detail & Related papers (2021-07-08T08:13:11Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
Malaria is one of the deadliest diseases in today world which causes thousands of deaths per year.
The parasites responsible for malaria are scientifically known as Plasmodium which infects the red blood cells in human beings.
The diagnosis of malaria requires identification and manual counting of parasitized cells by medical practitioners in microscopic blood smears.
arXiv Detail & Related papers (2020-06-17T13:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.