A fast algorithm to minimize prediction loss of the optimal solution in inverse optimization problem of MILP
- URL: http://arxiv.org/abs/2405.14273v3
- Date: Sat, 24 May 2025 13:02:20 GMT
- Title: A fast algorithm to minimize prediction loss of the optimal solution in inverse optimization problem of MILP
- Authors: Akira Kitaoka,
- Abstract summary: We consider the inverse optimization problem of estimating the weights of the objective function for a mixed integer linear program (MILP)<n>We show and demonstrate that the proposed method efficiently learns the weights.<n>Experiments demonstrate that the proposed method solves the inverse optimization problems of MILP using fewer than $1/7$ the number of MILP calls required by known methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the inverse optimization problem of estimating the weights of the objective function such that the given solution is an optimal solution for a mixed integer linear program (MILP). In this inverse optimization problem, the known methods exhibit inefficient convergence. Specifically, if $d$ denotes the dimension of the weights and $k$ the number of iterations, then the error of the weights is bounded by $O(k^{-1/(d-1)})$, leading to slow convergence as $d$ increases. We propose a projected subgradient method with a step size of $k^{-1/2}$ based on suboptimality loss. We theoretically show and demonstrate that the proposed method efficiently learns the weights. In particular, we show that there exists a constant $\gamma > 0$ such that the distance between the learned and true weights is bounded by $ O\left(k^{-1/(1+\gamma)} \exp\left(-\frac{\gamma k^{1/2}}{2+\gamma}\right)\right), $ or the optimal solution is exactly recovered. Furthermore, experiments demonstrate that the proposed method solves the inverse optimization problems of MILP using fewer than $1/7$ the number of MILP calls required by known methods, and converges within a finite number of iterations.
Related papers
- Optimal Rates for Robust Stochastic Convex Optimization [12.620782629498812]
We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the $epsilon$-contamination model.
Our algorithms do not require stringent assumptions, including Lipschitz continuity and smoothness of individual sample functions.
We complement our algorithmic developments with a tight information-theoretic lower bound for robust SCO.
arXiv Detail & Related papers (2024-12-15T00:52:08Z) - Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - A quantum central path algorithm for linear optimization [5.450016817940232]
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
arXiv Detail & Related papers (2023-11-07T13:26:20Z) - Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
We study the complexity of producing neither smooth nor convex points of Lipschitz objectives which are possibly using only zero-order evaluations.
Our analysis is based on a simple yet powerful.
Goldstein-subdifferential set, which allows recent advancements in.
nonsmooth non optimization.
arXiv Detail & Related papers (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - An Even More Optimal Stochastic Optimization Algorithm: Minibatching and
Interpolation Learning [24.634592613300274]
We present and analyze an algorithm for optimizing smooth and convex or strongly convex objectives using minibatch gradient estimates.
The algorithm is optimal with respect to its dependence on both the minibatch size and minimum expected loss simultaneously.
arXiv Detail & Related papers (2021-06-04T21:06:00Z) - Instance Specific Approximations for Submodular Maximization [45.91235224228292]
We look for methods to benchmark the performance of algorithms against optimal solutions on real-world instances.
A major question is how to measure the performance of an algorithm in comparison to an optimal solution on instances we encounter in practice.
Our main contribution is not a new algorithm for submodular minimization but an analytical method that measures how close an algorithm for submodular instance is to optimal.
arXiv Detail & Related papers (2021-02-23T19:39:32Z) - Delayed Projection Techniques for Linearly Constrained Problems:
Convergence Rates, Acceleration, and Applications [24.763531954075656]
We study a novel class of projection-based algorithms for linearly constrained problems (LCPs)
We propose the delayed projection technique that calls a projection once for a while, lowering the projection frequency and improving the projection efficiency.
We show that it is feasible to improve projection efficiency in both strongly convex and generally convex cases.
arXiv Detail & Related papers (2021-01-05T13:42:41Z) - Train simultaneously, generalize better: Stability of gradient-based
minimax learners [12.691047660244331]
We show a key role in the performance of the trained minimax model under both convex concave and non-concave minimax settings.
We discuss several numerical results indicating the role of optimization algorithms in the generalization of learned minimax models.
arXiv Detail & Related papers (2020-10-23T17:44:43Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.