RoGs: Large Scale Road Surface Reconstruction with Meshgrid Gaussian
- URL: http://arxiv.org/abs/2405.14342v3
- Date: Thu, 21 Nov 2024 12:32:08 GMT
- Title: RoGs: Large Scale Road Surface Reconstruction with Meshgrid Gaussian
- Authors: Zhiheng Feng, Wenhua Wu, Tianchen Deng, Hesheng Wang,
- Abstract summary: Road surface reconstruction plays a crucial role in autonomous driving.
We propose a novel large-scale road surface reconstruction approach with meshgrid Gaussian, named RoGs.
We obtain excellent results in reconstruction of road surfaces in a variety of challenging real-world scenes.
- Score: 10.50103969885774
- License:
- Abstract: Road surface reconstruction plays a crucial role in autonomous driving, which can be used for road lane perception and autolabeling. Recently, mesh-based road surface reconstruction algorithms have shown promising reconstruction results. However, these mesh-based methods suffer from slow speed and poor reconstruction quality. To address these limitations, we propose a novel large-scale road surface reconstruction approach with meshgrid Gaussian, named RoGs. Specifically, we model the road surface by placing Gaussian surfels in the vertices of a uniformly distributed square mesh, where each surfel stores color, semantic, and geometric information. This square mesh-based layout covers the entire road with fewer Gaussian surfels and reduces the overlap between Gaussian surfels during training. In addition, because the road surface has no thickness, 2D Gaussian surfel is more consistent with the physical reality of the road surface than 3D Gaussian sphere. Then, unlike previous initialization methods that rely on point clouds, we introduce a vehicle pose-based initialization method to initialize the height and rotation of the Gaussian surfel. Thanks to this meshgrid Gaussian modeling and pose-based initialization, our method achieves significant speedups while improving reconstruction quality. We obtain excellent results in reconstruction of road surfaces in a variety of challenging real-world scenes.
Related papers
- PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
We propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction.
We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy.
Our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
arXiv Detail & Related papers (2024-06-10T17:59:01Z) - High-quality Surface Reconstruction using Gaussian Surfels [18.51978059665113]
We propose a novel point-based representation, Gaussian surfels, to combine the advantages of the flexible optimization procedure in 3D Gaussian points.
This is achieved by setting the z-scale of 3D Gaussian points to 0, effectively flattening the original 3D ellipsoid into a 2D ellipse.
By treating the local z-axis as the normal direction, it greatly improves optimization stability and surface alignment.
arXiv Detail & Related papers (2024-04-27T04:13:39Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - EMIE-MAP: Large-Scale Road Surface Reconstruction Based on Explicit Mesh and Implicit Encoding [21.117919848535422]
EMIE-MAP is a novel method for large-scale road surface reconstruction based on explicit mesh and implicit encoding.
Our method achieves remarkable road surface reconstruction performance in a variety of real-world challenging scenarios.
arXiv Detail & Related papers (2024-03-18T13:46:52Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
During the Gaussian Splatting optimization process, the scene's geometry can gradually deteriorate if its structure is not deliberately preserved.
We propose a novel approach called GeoGaussian to mitigate this issue.
Our proposed pipeline achieves state-of-the-art performance in novel view synthesis and geometric reconstruction.
arXiv Detail & Related papers (2024-03-17T20:06:41Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
It is challenging for users to directly deform or manipulate implicit representations with large deformations in the real-time fashion.
We develop a novel GS-based method that enables interactive deformation.
Our approach achieves high-quality reconstruction and effective deformation, while maintaining the promising rendering results at a high frame rate.
arXiv Detail & Related papers (2024-02-07T12:36:54Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
We propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces.
The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure.
We introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin.
arXiv Detail & Related papers (2023-12-01T07:04:47Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - StreetSurf: Extending Multi-view Implicit Surface Reconstruction to
Street Views [6.35910814268525]
We present a novel multi-view implicit surface reconstruction technique, termed StreetSurf.
It is readily applicable to street view images in widely-used autonomous driving datasets, without necessarily requiring LiDAR data.
We achieve state of the art reconstruction quality in both geometry and appearance within only one to two hours of training time.
arXiv Detail & Related papers (2023-06-08T07:19:27Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.