論文の概要: Mitigating Quantization Errors Due to Activation Spikes in GLU-Based LLMs
- arxiv url: http://arxiv.org/abs/2405.14428v1
- Date: Thu, 23 May 2024 10:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:34:33.831211
- Title: Mitigating Quantization Errors Due to Activation Spikes in GLU-Based LLMs
- Title(参考訳): GLU系LLMにおける活性化スパイクによる量子化誤差の緩和
- Authors: Jaewoo Yang, Hayun Kim, Younghoon Kim,
- Abstract要約: ポストトレーニング量子化(PTQ)は、ウェイトとアクティベーションを定量化し、精度を下げる一般的なアプローチとなっている。
本稿では,現代の大規模言語モデルのフィードフォワードネットワーク(FFN)において広く利用されているGLU変種におけるアクティベーション量子化の課題について述べる。
本稿では,量子化時のアクティベーションスパイクを分離するために,量子化フリーモジュール(QFeM)と量子化フリープリフィックス(QFeP)の2つの経験的手法を提案する。
- 参考スコア(独自算出の注目度): 5.408684636210501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern large language models (LLMs) have established state-of-the-art performance through architectural improvements, but still require significant computational cost for inference. In an effort to reduce the inference cost, post-training quantization (PTQ) has become a popular approach, quantizing weights and activations to lower precision, such as INT8. In this paper, we reveal the challenges of activation quantization in GLU variants, which are widely used in feed-forward network (FFN) of modern LLMs, such as LLaMA family. The problem is that severe local quantization errors, caused by excessive magnitudes of activation in GLU variants, significantly degrade the performance of the quantized LLM. We denote these activations as activation spikes. Our further observations provide a systematic pattern of activation spikes: 1) The activation spikes occur in the FFN of specific layers, particularly in the early and late layers, 2) The activation spikes are dedicated to a couple of tokens, rather than being shared across a sequence. Based on our observations, we propose two empirical methods, Quantization-free Module (QFeM) and Quantization-free Prefix (QFeP), to isolate the activation spikes during quantization. Our extensive experiments validate the effectiveness of the proposed methods for the activation quantization, especially with coarse-grained scheme, of latest LLMs with GLU variants, including LLaMA-2/3, Mistral, Mixtral, SOLAR, and Gemma. In particular, our methods enhance the current alleviation techniques (e.g., SmoothQuant) that fail to control the activation spikes. Code is available at https://github.com/onnoo/activation-spikes.
- Abstract(参考訳): 現代の大規模言語モデル(LLM)は、アーキテクチャの改善を通じて最先端のパフォーマンスを確立しているが、推論にはかなりの計算コストを必要とする。
推論コストを削減するために、後トレーニング量子化(PTQ)は、INT8のようなより低い精度でウェイトとアクティベーションを定量化する一般的なアプローチとなっている。
本稿では,LLaMA ファミリーなどの現代の LLM のフィードフォワードネットワーク (FFN) において広く利用されている GLU 変種における活性化量子化の課題を明らかにする。
問題は、GLU変種における過大な活性化によって生じる重大局所量子化誤差が、量子化LDMの性能を著しく低下させることである。
これらのアクティベーションをアクティベーションスパイクと表現する。
我々のさらなる観測は、活性化スパイクの体系的なパターンを提供する。
1) 特定の層, 特に初期層および後期層のFFNにおいて, 活性化スパイクが発生する。
2)アクティベーションスパイクは、シーケンス間で共有されるのではなく、いくつかのトークンに割り当てられる。
本研究では,量子化時のアクティベーションスパイクを分離するために,量子化フリーモジュール(QFeM)と量子化フリープリフィックス(QFeP)の2つの経験的手法を提案する。
LLaMA-2/3, Mistral, Mixtral, SOLAR, Gemma を含む最新の LLM の活性化量子化手法の有効性を検証した。
特に,本手法は,アクティベーションスパイクの制御に失敗した現在の緩和技術(例えば,SmoothQuant)を強化する。
コードはhttps://github.com/onnoo/activation-spikes.comで入手できる。
関連論文リスト
- ASER: Activation Smoothing and Error Reconstruction for Large Language Model Quantization [18.017182472532415]
ASERは、SVDを白化して構築したLoRAスタイルの行列を用いた量子化誤差に対する低ランク補償からなるアルゴリズムである。
ASERは、典型的な外れ値を低ビットの値に量子化することができる。
論文 参考訳(メタデータ) (2024-11-12T12:52:04Z) - Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
活性化空間性は、除去できる活性化出力の中に、かなり弱い分散要素が存在することを表す。
PPL-$p%$ sparsity, a accurate and performance-aware activation sparsity metric。
我々は、SiLUよりも活性化関数としてReLUが効率的であることを示し、より多くのトレーニングデータを利用してアクティベーション空間を改善することができることを示した。
論文 参考訳(メタデータ) (2024-11-04T17:59:04Z) - Prefixing Attention Sinks can Mitigate Activation Outliers for Large Language Model Quantization [13.475050661770796]
我々は,問題となるトークンの発生を防止し,アクティベーション単位の量子化を容易にするための簡易かつ効果的な戦略を開発する。
トークンキャッシュを調整して、その後のトークンのアクティベーションを規則化し、より量子化しやすいものにします。
我々は,この手法を広範囲のモデルとベンチマークで徹底的に評価し,拡張子ごとのW8A8量子化の確立されたベースラインをはるかに上回っていることを確認した。
論文 参考訳(メタデータ) (2024-06-17T18:33:44Z) - I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models [20.070306492164427]
学習後の量子化は、大きな言語モデルの推論を加速する強力な技術として機能する。
既存の作業は、推論中にかなりの数の浮動小数点(FP)操作を必要とする。
この制限は、エッジとクラウドデバイス上の大きな言語モデルのデプロイを妨げる。
大規模言語モデルに適した整数のみの完全量子化PTQフレームワークであるI-LLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T05:56:11Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - ApiQ: Finetuning of 2-Bit Quantized Large Language Model [12.328293460903911]
ApiQは、LoRAコンポーネントを並列に初期化し、LLMの重みを定量化することで、失われた情報を量子化から復元するように設計されている。
様々なビット幅にわたって優れた微調整結果が得られる。
論文 参考訳(メタデータ) (2024-02-07T09:36:54Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z) - QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models [85.02796681773447]
量子化対応低ランク適応(QA-LoRA)アルゴリズムを提案する。
その動機は量子化と適応の自由の不均衡度にある。
QA-LoRAは数行のコードで簡単に実装できる。
論文 参考訳(メタデータ) (2023-09-26T07:22:23Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
本研究の目的は,LLMを小言語モデルと区別する重要な特徴である現象能力に対する量子化の影響を検討することである。
実験により、これらの創発能力は4ビット量子化モデルに残っており、2ビットモデルは深刻な性能劣化に直面していることがわかった。
低ビットモデルの性能向上のために,(1) 部品(またはサブ構造)が量子化に敏感である場合の微視的影響解析,(2) モデル微視化による性能補償の2つの実験を行った。
論文 参考訳(メタデータ) (2023-07-16T15:11:01Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z) - RPTQ: Reorder-based Post-training Quantization for Large Language Models [46.03754730678076]
大規模言語モデル(LLM)は目覚ましいパフォーマンスを示しているが、そのデプロイメントはメモリ使用量が非常に多いため、課題を呈している。
本稿では、リオーダーベースのアプローチを用いたRTTQと呼ばれる量子化手法を提案する。
実験では,LPMの3ビットアクティベーションを初めて利用し,メモリ使用量の大幅な削減を実現した。
論文 参考訳(メタデータ) (2023-04-03T15:46:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。