論文の概要: I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models
- arxiv url: http://arxiv.org/abs/2405.17849v2
- Date: Wed, 5 Jun 2024 15:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:59:22.748840
- Title: I-LLM: Efficient Integer-Only Inference for Fully-Quantized Low-Bit Large Language Models
- Title(参考訳): I-LLM:完全量子化低ビット大言語モデルのための効率的な整数オンリー推論
- Authors: Xing Hu, Yuan Cheng, Dawei Yang, Zhihang Yuan, Jiangyong Yu, Chen Xu, Sifan Zhou,
- Abstract要約: 学習後の量子化は、大きな言語モデルの推論を加速する強力な技術として機能する。
既存の作業は、推論中にかなりの数の浮動小数点(FP)操作を必要とする。
この制限は、エッジとクラウドデバイス上の大きな言語モデルのデプロイを妨げる。
大規模言語モデルに適した整数のみの完全量子化PTQフレームワークであるI-LLMを提案する。
- 参考スコア(独自算出の注目度): 20.070306492164427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization (PTQ) serves as a potent technique to accelerate the inference of large language models (LLMs). Nonetheless, existing works still necessitate a considerable number of floating-point (FP) operations during inference, including additional quantization and de-quantization, as well as non-linear operators such as RMSNorm and Softmax. This limitation hinders the deployment of LLMs on the edge and cloud devices. In this paper, we identify the primary obstacle to integer-only quantization for LLMs lies in the large fluctuation of activations across channels and tokens in both linear and non-linear operations. To address this issue, we propose I-LLM, a novel integer-only fully-quantized PTQ framework tailored for LLMs. Specifically, (1) we develop Fully-Smooth Block-Reconstruction (FSBR) to aggressively smooth inter-channel variations of all activations and weights. (2) to alleviate degradation caused by inter-token variations, we introduce a novel approach called Dynamic Integer-only MatMul (DI-MatMul). This method enables dynamic quantization in full-integer matrix multiplication by dynamically quantizing the input and outputs with integer-only operations. (3) we design DI-ClippedSoftmax, DI-Exp, and DI-Normalization, which utilize bit shift to execute non-linear operators efficiently while maintaining accuracy. The experiment shows that our I-LLM achieves comparable accuracy to the FP baseline and outperforms non-integer quantization methods. For example, I-LLM can operate at W4A4 with negligible loss of accuracy. To our knowledge, we are the first to bridge the gap between integer-only quantization and LLMs. We've published our code on anonymous.4open.science, aiming to contribute to the advancement of this field.
- Abstract(参考訳): 後学習量子化(PTQ)は、大規模言語モデル(LLM)の推論を加速する強力な手法である。
それでも、既存の作業は、RMSNormやSoftmaxのような非線形演算子と同様に、さらなる量子化や非量子化を含む、推論中にかなりの数の浮動小数点演算を必要とする。
この制限は、エッジとクラウドデバイスへのLSMのデプロイを妨げる。
本稿では,LLMにおける整数のみの量子化の主な障害は,線形演算と非線形演算の両方において,チャネルとトークン間のアクティベーションが大きく変動することにある。
この問題に対処するために,LLMに適した整数のみの完全量子化PTQフレームワークであるI-LLMを提案する。
具体的には,(1)全てのアクティベーションと重みのチャネル間変動を積極的にスムースに行うために,FSBR(Fully-Smooth Block-Reconstruction)を開発した。
2) トキン間変異による劣化を軽減するため, 動的整数のみのMatMul (DI-MatMul) と呼ばれる新しいアプローチを導入する。
この方法は整数のみの演算で入力と出力を動的に量子化することにより、全整数行列乗法における動的量子化を可能にする。
(3) ビットシフトを利用したDI-ClippedSoftmax, DI-Exp, DI-Normalizationを設計し, 精度を維持しつつ, 非線形演算子を効率的に実行する。
実験の結果,我々のI-LLMはFPベースラインに匹敵する精度を達成し,非整数量子化法より優れていた。
例えば、I-LLMはW4A4で動作でき、精度は無視できる。
我々の知る限り、我々は整数のみの量子化と LLM のギャップを埋める最初の人物である。
我々は、この分野の進歩に貢献することを目的として、匿名の.4open.scienceに関するコードを公開しました。
関連論文リスト
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - OPAL: Outlier-Preserved Microscaling Quantization Accelerator for Generative Large Language Models [0.562479170374811]
本稿では, OPAL と呼ばれるエネルギー効率の高い LLM アクセラレータを生成タスクに適用するハードウェア・ソフトウェア共同設計手法を提案する。
OPALは、電力効率を最大化するためにシフトと減算のみを必要とするソフトマックス演算にlog2ベースの近似を使用する。
その結果、エネルギー効率を 1.62.2x に改善し、面積を 2.43.1x に減らし、精度を損なうことができる。
論文 参考訳(メタデータ) (2024-09-06T02:33:20Z) - Q-Sparse: All Large Language Models can be Fully Sparsely-Activated [93.45300714803429]
Q-Sparseは、スパースアクティベートされた大規模言語モデル(LLM)を訓練するための、シンプルで効果的なアプローチである。
Q-Sparse は LLM における活性化の完全な分散を可能にし、推論においてかなりの効率向上をもたらす。
バッチトレーニングと推論のためのBlock Q-Sparseも導入しています。
論文 参考訳(メタデータ) (2024-07-15T17:59:29Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - LLM-FP4: 4-Bit Floating-Point Quantized Transformers [38.23587031169402]
大規模言語モデル(LLM)における重みとアクティベーションを4ビット浮動小数点値まで定量化するLLM-FP4を提案する。
整数量子化と比較すると、浮動小数点(FP)量子化はより柔軟であり、長い尾や鐘のような分布を扱うことができる。
LLaMA-13Bの重みとアクティベーションの両方を4ビットに定量化し,平均スコア63.1を得る。
論文 参考訳(メタデータ) (2023-10-25T17:59:32Z) - Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM [6.85331857224501]
LLM(Large Language Models)は、メモリ要件と計算能力に関する重要なハードウェア上の課題を提起する。
LLMには2つの主要な量子化スキームがある: 粗粒(textite.g.$ channel-wise)量子化と細粒(textite.g.$ group-wise)量子化である。
我々は、高速な推論速度を確保しつつ優れた性能を維持するLLMのための新しいA8W4量子化であるDual Grained Quantization (DGQ)を紹介する。
論文 参考訳(メタデータ) (2023-10-07T14:50:28Z) - Rethinking Channel Dimensions to Isolate Outliers for Low-bit Weight Quantization of Large Language Models [7.485068491216164]
大規模言語モデル(LLM)は、最近、様々なタスクで顕著な成功を収めた。
重みのみの量子化は有望なアプローチであるが、大振幅のアクティベーションアウトレイアのため、サブ-4ビットの量子化は依然として課題である。
本稿では,各入力チャネル内の量子化グループを生成する簡易かつ効果的な手法である,IC単位の量子化を提案する。
論文 参考訳(メタデータ) (2023-09-27T09:48:31Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models [14.929695160346276]
大規模言語モデル(LLM)は優れた性能を示すが、計算とメモリ集約性がある。
SmoothQuant, トレーニング不要, 精度保存, 汎用的なポストトレーニング量子化ソリューションを提案する。
最大1.56倍の高速化と2倍のメモリ削減を実現した。
論文 参考訳(メタデータ) (2022-11-18T18:59:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。