論文の概要: RaFe: Ranking Feedback Improves Query Rewriting for RAG
- arxiv url: http://arxiv.org/abs/2405.14431v1
- Date: Thu, 23 May 2024 11:00:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:34:33.766518
- Title: RaFe: Ranking Feedback Improves Query Rewriting for RAG
- Title(参考訳): RaFe: RAGのクエリ書き換えを改善するランク付けフィードバック
- Authors: Shengyu Mao, Yong Jiang, Boli Chen, Xiao Li, Peng Wang, Xinyu Wang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang,
- Abstract要約: アノテーションを使わずにクエリ書き換えモデルをトレーニングするためのフレームワークを提案する。
公開されているリランカを活用することで、フィードバックはリライトの目的とよく一致します。
- 参考スコア(独自算出の注目度): 83.24385658573198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) and Retrieval Augmentation Generation (RAG) techniques have evolved, query rewriting has been widely incorporated into the RAG system for downstream tasks like open-domain QA. Many works have attempted to utilize small models with reinforcement learning rather than costly LLMs to improve query rewriting. However, current methods require annotations (e.g., labeled relevant documents or downstream answers) or predesigned rewards for feedback, which lack generalization, and fail to utilize signals tailored for query rewriting. In this paper, we propose ours, a framework for training query rewriting models free of annotations. By leveraging a publicly available reranker, ours~provides feedback aligned well with the rewriting objectives. Experimental results demonstrate that ours~can obtain better performance than baselines.
- Abstract(参考訳): LLM(Large Language Models)とRAG(Retrieval Augmentation Generation)の技術が進化するにつれて、クエリ書き換えはオープンドメインQAのような下流タスクのためのRAGシステムに広く組み込まれている。
多くの研究は、クエリ書き換えを改善するために、高価なLCMではなく、強化学習による小さなモデルの利用を試みた。
しかし、現在のメソッドではアノテーション(ラベル付きドキュメントやダウンストリームの回答など)やフィードバックのための事前設計された報酬が必要で、一般化が欠如しており、クエリの書き直しに適した信号が利用できない。
本稿では,アノテーションを使わずにクエリ書き換えモデルをトレーニングするためのフレームワーク,我が社の提案する。
公開されているリランカを活用することで、私たちのフィードバックは書き直しの目的とよく一致します。
実験の結果,ベースラインよりも優れた性能が得られることがわかった。
関連論文リスト
- MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [34.39053202801489]
現実世界のRAGシステムでは、現在のクエリは会話コンテキストからの音声楕円とあいまいな参照を含むことが多い。
本稿では,検索プロセスと生成結果の両方からマルチアスペクトフィードバックを統合することにより,RAG性能を向上させる新しいクエリ書き換え手法MaFeRwを提案する。
2つの対話型RAGデータセットの実験結果から、MaFeRwはベースラインよりも優れた生成指標と安定したトレーニングを達成できることが示された。
論文 参考訳(メタデータ) (2024-08-30T07:57:30Z) - RE-AdaptIR: Improving Information Retrieval through Reverse Engineered Adaptation [37.969478059005574]
テキスト検索のために微調整された大規模言語モデル(LLM)は、いくつかの情報検索ベンチマークで最先端の結果を示している。
本稿では,情報検索の文脈へのリバースエンジニアリング適応の拡張の有効性について検討する。
論文 参考訳(メタデータ) (2024-06-20T22:28:11Z) - Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers [66.55612528039894]
AdaQRは、シードデータセットからの限定的な書き直しアノテーションと完全にパスラベルのないクエリ書き換えモデルをトレーニングするフレームワークである。
会話クエリに条件付き回答の確率を用いて,これらの候補に対する検索者の嗜好を評価する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T16:09:05Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
大きな言語モデル(LLM)は優れた能力を示すが、不正確なあるいは幻覚反応を引き起こす傾向がある。
この制限は、膨大な事前トレーニングデータセットに依存することに起因するため、目に見えないシナリオでのエラーの影響を受けやすい。
Retrieval-Augmented Generation (RAG) は、外部の関連文書を応答生成プロセスに組み込むことによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-03-31T08:58:54Z) - Improving Retrieval for RAG based Question Answering Models on Financial Documents [0.046603287532620746]
本稿では,RAGパイプラインの既存の制約について検討し,テキスト検索の方法を紹介する。
高度なチャンキングテクニック、クエリ拡張、メタデータアノテーションの組み込み、再ランク付けアルゴリズムの適用、埋め込みアルゴリズムの微調整などの戦略を練っている。
論文 参考訳(メタデータ) (2024-03-23T00:49:40Z) - RAFT: Adapting Language Model to Domain Specific RAG [75.63623523051491]
本稿では、ドメイン内の「オープンブック」設定において、モデルが質問に答える能力を改善するためのトレーニングレシピであるRetrieval Augmented FineTuning(RAFT)を紹介する。
RAFTは、質問に答える助けとなる関連文書から、動詞の正しいシーケンスを引用することで、これを達成します。
RAFTは、PubMed、HotpotQA、Gorillaデータセット全体のモデルのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2024-03-15T09:26:02Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Enhancing Conversational Search: Large Language Model-Aided Informative
Query Rewriting [42.35788605017555]
本稿では,大規模言語モデル(LLM)をクエリリフレクタとして利用することを提案する。
精巧な書き直しのための4つの重要な特性を定義し、それら全てをインストラクションに組み込む。
初期クエリの書き直しが可能な場合, LLM の書き直しエディタの役割を導入し, "書き直し-テーマ-編集" プロセスを作成する。
論文 参考訳(メタデータ) (2023-10-15T03:04:17Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Does Recommend-Revise Produce Reliable Annotations? An Analysis on
Missing Instances in DocRED [60.39125850987604]
テキスト修正方式は, 偽陰性サンプルと, 人気エンティティや関係性に対する明らかな偏見をもたらすことを示す。
より信頼性の高いドキュメントREモデルのテストセットとして機能するように、relabeledデータセットがリリースされている。
論文 参考訳(メタデータ) (2022-04-17T11:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。