論文の概要: Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers
- arxiv url: http://arxiv.org/abs/2406.10991v1
- Date: Sun, 16 Jun 2024 16:09:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:32:57.049208
- Title: Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers
- Title(参考訳): Adaptive Query Rewriting: 会話回答のMarginal Probabilityによるリライタのアライメント
- Authors: Tianhua Zhang, Kun Li, Hongyin Luo, Xixin Wu, James Glass, Helen Meng,
- Abstract要約: AdaQRは、シードデータセットからの限定的な書き直しアノテーションと完全にパスラベルのないクエリ書き換えモデルをトレーニングするフレームワークである。
会話クエリに条件付き回答の確率を用いて,これらの候補に対する検索者の嗜好を評価する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 66.55612528039894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query rewriting is a crucial technique for passage retrieval in open-domain conversational question answering (CQA). It decontexualizes conversational queries into self-contained questions suitable for off-the-shelf retrievers. Existing methods attempt to incorporate retriever's preference during the training of rewriting models. However, these approaches typically rely on extensive annotations such as in-domain rewrites and/or relevant passage labels, limiting the models' generalization and adaptation capabilities. In this paper, we introduce AdaQR ($\textbf{Ada}$ptive $\textbf{Q}$uery $\textbf{R}$ewriting), a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label. Our approach begins by fine-tuning compact large language models using only ~$10\%$ of rewrite annotations from the seed dataset training split. The models are then utilized to generate rewrite candidates for each query instance. A novel approach is then proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query by marginalizing the Top-$K$ passages. This serves as the reward for optimizing the rewriter further using Direct Preference Optimization (DPO), a process free of rewrite and retrieval annotations. Experimental results on four open-domain CQA datasets demonstrate that AdaQR not only enhances the in-domain capabilities of the rewriter with limited annotation requirement, but also adapts effectively to out-of-domain datasets.
- Abstract(参考訳): クエリ書き換えは、オープンドメイン会話型質問応答(CQA)における経路検索の重要な手法である。
会話クエリを棚から取り出すのに適した自己完結した質問に分解する。
既存の手法では、リライトモデルのトレーニング中にレトリバーの好みを取り入れようとする。
しかしながら、これらのアプローチは通常、ドメイン内書き直しや関連するパスラベルのような広範なアノテーションに依存し、モデルの一般化と適応能力を制限する。
本稿では,シードデータセットからの限定的な書き直しアノテーションを備えたクエリ書き換えモデルのトレーニングフレームワークであるAdaQR ($\textbf{Ada}$ptive $\textbf{Q}$uery $\textbf{R}$ewritingを紹介する。
私たちのアプローチは、シードデータセットのトレーニング分割から書き直しアノテーションを ~$10\% だけ使用して、コンパクトな大規模言語モデルを微調整することから始まります。
モデルを使用して各クエリインスタンスの書き直し候補を生成する。
そこで,提案手法は,Top-$K$節を疎外することで,会話クエリ上で条件付けられた回答の確率を用いて,検索者のこれらの候補に対する選好を評価するものである。
これは書き直しや検索のアノテーションのないプロセスであるDirect Preference Optimization (DPO)を使って書き直しを最適化する報酬として機能する。
4つのオープンドメインのCQAデータセットの実験結果によると、AdaQRはリライターのドメイン内機能を強化するだけでなく、ドメイン外のデータセットに効果的に適応する。
関連論文リスト
- RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
アノテーションを使わずにクエリ書き換えモデルをトレーニングするためのフレームワークを提案する。
公開されているリランカを活用することで、フィードバックはリライトの目的とよく一致します。
論文 参考訳(メタデータ) (2024-05-23T11:00:19Z) - Ask Optimal Questions: Aligning Large Language Models with Retriever's
Preference in Conversational Search [25.16282868262589]
RetPOは、ターゲット検索システムの好みに合わせて検索クエリを再構成するための言語モデル(LM)を最適化するように設計されている。
我々は、12Kの会話で410K以上のクエリを書き換えるRetrievers' Feedbackと呼ばれる大規模なデータセットを構築した。
このモデルにより,最近の2つの対話型検索ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-02-19T04:41:31Z) - Enhancing Conversational Search: Large Language Model-Aided Informative
Query Rewriting [42.35788605017555]
本稿では,大規模言語モデル(LLM)をクエリリフレクタとして利用することを提案する。
精巧な書き直しのための4つの重要な特性を定義し、それら全てをインストラクションに組み込む。
初期クエリの書き直しが可能な場合, LLM の書き直しエディタの役割を導入し, "書き直し-テーマ-編集" プロセスを作成する。
論文 参考訳(メタデータ) (2023-10-15T03:04:17Z) - Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA)は、マルチターン会話を通じて質問に答えることを目的としている。
そこで本研究では,単語列に対する句検索方式を用いて,回答を直接予測する手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T09:46:38Z) - ConvGQR: Generative Query Reformulation for Conversational Search [37.54018632257896]
ConvGQRは、生成事前訓練された言語モデルに基づいて会話クエリを再構成する新しいフレームワークである。
本稿では,クエリ再構成と検索の両方を最適化する知識注入機構を提案する。
論文 参考訳(メタデータ) (2023-05-25T01:45:06Z) - Improving Passage Retrieval with Zero-Shot Question Generation [109.11542468380331]
オープンな質問応答における経路検索を改善するための,シンプルで効果的な再ランク付け手法を提案する。
再ランカは、学習済み言語モデルを用いて、検索されたパスに条件付けられた入力質問の確率を算出するゼロショット質問生成モデルを用いて、検索されたパスを再スコアする。
論文 参考訳(メタデータ) (2022-04-15T14:51:41Z) - CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement
Learning [16.470428531658232]
本研究では,会話型質問を独立した質問に書き換えるクエリ書き換えモデルCONQRRを提案する。
CONQRR は最近のオープンドメイン CQA データセットで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-12-16T01:40:30Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
文選択のためのモデルの2つのグループについて述べる。QAベースのアプローチは、解答候補を特定するための完全なQAシステムを実行し、検索ベースのモデルは、各質問に特に関連する各節の一部を見つける。
非常に軽量なQAモデルは、このタスクではうまく機能するが、検索ベースモデルは高速である。
論文 参考訳(メタデータ) (2020-09-18T23:39:15Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。