論文の概要: Coherence-enhanced single-qubit thermometry out of equilibrium
- arxiv url: http://arxiv.org/abs/2405.14439v1
- Date: Thu, 23 May 2024 11:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:34:33.752938
- Title: Coherence-enhanced single-qubit thermometry out of equilibrium
- Title(参考訳): Coherence-enhanced single-qubit thermometry out of equilibrium
- Authors: Gonçalo Frazao, Marco Pezzutto, Yasser Omar, Emmanuel Zambrini Cruzeiro, Stefano Gherardini,
- Abstract要約: 量子温度計として用いられる有限次元量子系をマルコフ入浴熱力学に接触させる。
量子フィッシャー情報によって量子化された温度計の感度は、初期状態における量子コヒーレンスによって向上していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The metrological limits of thermometry operated in nonequilibrium dynamical regimes are analyzed. We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal bath inducing Markovian thermalization dynamics. The quantum thermometer is initialized in a generic quantum state, possibly including quantum coherence w.r.t. the Hamiltonian basis. We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state. We analytically show this in the specific case of qubit thermometers for which the maximization of the quantum Fisher information occurs at a finite time during the transient of the thermalization dynamics. Such a finite-time sensitivity enhancement can be better than the sensitivity that is achieved asymptotically.
- Abstract(参考訳): 非平衡力学系における温度測定の気象限界を解析した。
量子温度計として用いられる有限次元量子系をマルコフ熱化力学を誘導する熱浴に接触させる。
量子温度計は、おそらくハミルトニアン基底の量子コヒーレンスを含む一般的な量子状態で初期化される。
量子フィッシャー情報によって量子化された温度計の感度は、初期状態における量子コヒーレンスによって向上していることを示す。
我々は、量子フィッシャー情報の最大化が熱化ダイナミクスの過渡期において有限時間に起こるキュービット温度計の特定の場合において、これを解析的に示す。
このような有限時間感度増強は漸近的に達成される感度よりも優れている。
関連論文リスト
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
本稿では,69個の超伝導量子ビットからなる量子シミュレータについて述べる。
古典的Kosterlitz-Thouless相転移のシグネチャと,Kibble-Zurekスケール予測からの強い偏差を観測する。
本システムは, 対角二量体状態でディジタル的に調製し, 熱化時のエネルギーと渦の輸送を画像化する。
論文 参考訳(メタデータ) (2024-05-27T17:40:39Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
エネルギー固有状態と熱密度行列の両方について量子フィッシャー情報(QFI)を計算する。
局所的なユニタリ変換の結果と比較した。
論文 参考訳(メタデータ) (2023-04-04T09:28:19Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
本研究では, 量子系が熱浴と相互作用する際の可視性に関する量子一般化を実験的に提案する。
微視的可逆性の原理に対する量子修正が低温限界において重要であることを検証した。
論文 参考訳(メタデータ) (2022-05-26T00:25:29Z) - Universal cooling dynamics toward a quantum critical point [0.0]
本研究では,多体量子系を初期熱状態から量子臨界点へ冷却する際の断熱性の損失について検討する。
動力学の断熱度を定量化する励起密度は、冷却速度のスケーリング則に従う。
論文 参考訳(メタデータ) (2022-04-15T18:00:12Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
本研究では, 有限温度における熱力学的臨界量子センシングシナリオを提案する。
ディックモデルの熱力学的臨界度は, センシング精度を著しく向上させることができることが明らかとなった。
論文 参考訳(メタデータ) (2021-10-15T02:39:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Spectroscopy and critical quantum thermometry in the ultrastrong
coupling regime [0.0]
結合系の初期状態によっては、真空ラビ分裂は顕著な非対称性を示す。
超強結合系における温度推定の究極的限界を得る。
論文 参考訳(メタデータ) (2020-09-04T03:29:05Z) - Non-equilibrium readiness and accuracy of Gaussian Quantum Thermometers [0.0]
量子絡み合いが複合ガウス温度計の可読性をいかに高めるかを示す。
非平衡条件は温度推定において最高の感度を保証しないことを示す。
論文 参考訳(メタデータ) (2020-05-05T18:00:01Z) - Tight bound on finite-resolution quantum thermometry at low temperatures [0.0]
寒冷量子系の温度測定における基本精度限界について検討する。
温度が0に近づくにつれて、最適精度のスケーリングと温度との密接な関係を導出する。
論文 参考訳(メタデータ) (2020-01-13T08:13:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。