論文の概要: A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
- arxiv url: http://arxiv.org/abs/2405.14519v1
- Date: Thu, 23 May 2024 13:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 15:05:17.865047
- Title: A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection
- Title(参考訳): マルウェア検出における逆例のゼロ階最適化のための新しい定式化
- Authors: Marco Rando, Luca Demetrio, Lorenzo Rosasco, Fabio Roli,
- Abstract要約: ゼロオーダー最適化フレームワークでマルウェア検出を学習する方法を示す。
我々は、Windows マルウェア検出に対するゼロオーダー攻撃である ZEXE を提案し、研究する。
- 参考スコア(独自算出の注目度): 14.786557372850094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning malware detectors are vulnerable to adversarial EXEmples, i.e. carefully-crafted Windows programs tailored to evade detection. Unlike other adversarial problems, attacks in this context must be functionality-preserving, a constraint which is challenging to address. As a consequence heuristic algorithms are typically used, that inject new content, either randomly-picked or harvested from legitimate programs. In this paper, we show how learning malware detectors can be cast within a zeroth-order optimization framework which allows to incorporate functionality-preserving manipulations. This permits the deployment of sound and efficient gradient-free optimization algorithms, which come with theoretical guarantees and allow for minimal hyper-parameters tuning. As a by-product, we propose and study ZEXE, a novel zero-order attack against Windows malware detection. Compared to state-of-the-art techniques, ZEXE provides drastic improvement in the evasion rate, while reducing to less than one third the size of the injected content.
- Abstract(参考訳): 機械学習マルウェア検出装置は、敵のEXEmples、すなわち、検出を避けるのに適した慎重に構築されたWindowsプログラムに対して脆弱である。
他の敵問題とは異なり、このコンテキストでの攻撃は機能保存でなければならない。
その結果、ヒューリスティックなアルゴリズムが一般的に使われ、ランダムにピックされたり、正規のプログラムから取り出されたりして、新しいコンテンツを注入する。
本稿では,ゼロ階最適化フレームワークでマルウェア検出を学習し,機能保存操作を組み込む方法について述べる。
これにより、理論的保証と最小限のハイパーパラメータチューニングが可能な、音と効率的な勾配のない最適化アルゴリズムの展開が可能になる。
副産物として、Windows マルウェア検出に対する新しいゼロオーダー攻撃である ZEXE を提案し、研究する。
最先端技術と比較して、ZEXEは、注入されたコンテンツの3分の1以下に削減しつつ、回避率を大幅に改善する。
関連論文リスト
- MalPurifier: Enhancing Android Malware Detection with Adversarial
Purification against Evasion Attacks [19.68134775248897]
MalPurifierは敵の浄化を利用して、独立して摂動を除去し、軽く柔軟な方法で攻撃を緩和する。
2つのAndroidマルウェアデータセットの実験結果は、MalPurifierが最先端の防御よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-12-11T14:48:43Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - PAD: Towards Principled Adversarial Malware Detection Against Evasion
Attacks [17.783849474913726]
本稿では,PAD(Principled Adversarial Malware Detection)と呼ばれる新しい対向学習フレームワークを提案する。
PADは、マルウェア検出装置を敵から守るために、分布的に離散的な摂動を定量化する学習可能な凸測定を基礎としている。
PADは、83.45%以上の精度で、27の回避攻撃に対するMLベースのマルウェア検出を強化できる。
VirusTotalの多くのアンチマルウェアスキャナーと、現実的な敵のマルウェアとを一致または性能で比較する。
論文 参考訳(メタデータ) (2023-02-22T12:24:49Z) - OOG- Optuna Optimized GAN Sampling Technique for Tabular Imbalanced
Malware Data [0.0]
本研究では,GAN(Generative Adversarial Network)サンプリング技術を用いて,新たなマルウェアサンプルを生成する。
本研究では,Optuna Optimized GAN(OOG)法のアーキテクチャを98.06%,99.0%,97.23%,98.04%の精度,精度,リコール,f1のスコアとともに示す。
論文 参考訳(メタデータ) (2022-11-25T16:59:30Z) - Flexible Android Malware Detection Model based on Generative Adversarial
Networks with Code Tensor [7.417407987122394]
既存のマルウェア検出方法は、既存の悪意のあるサンプルのみを対象としている。
本稿では,マルウェアとその変異を効率的に検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T03:20:34Z) - A two-steps approach to improve the performance of Android malware
detectors [4.440024971751226]
マルウェア検知器の性能を高めるための教師付き表現学習法であるGUIDED ReTRAINingを提案する。
265k以上のマルウェアと良性アプリを用いて,最先端の4つのAndroidマルウェア検出手法を検証した。
本手法は汎用的であり,二項分類タスクにおける分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2022-05-17T12:04:17Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。