Quantum mixtures of ultracold gases of neutral atoms
- URL: http://arxiv.org/abs/2405.14562v2
- Date: Tue, 10 Sep 2024 10:08:22 GMT
- Title: Quantum mixtures of ultracold gases of neutral atoms
- Authors: Cosetta Baroni, Giacomo Lamporesi, Matteo Zaccanti,
- Abstract summary: We discuss quantum mixtures of ultracold gases under three different perspectives.
We show how they can be exploited to investigate a plethora of topics from the few-body to the many-body regime.
A selection of results on recent experiments and possible interesting future directions are given.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: After decades of improvements in cooling techniques of several atomic species and in finding methods for the achievement of stable quantum mixtures, the field is now ready for an extensive use of such a versatile experimental platform for the investigation of a variety of physical problems. Among them, relevant examples are the dynamics of impurities in a quantum gas, the miscibility condition of different gases, the study of exotic topological structures, the interplay between magnetism and superfluidity, the formation of artificial molecules, or new few-body states. We illustrate the differences among possible quantum mixtures, be they homonuclear spin mixtures or heteronuclear ones, and show how they can be exploited to investigate a plethora of topics from the few-body to the many-body regime. In particular, we discuss quantum mixtures of ultracold gases under three different perspectives: systems made of a few atoms of different kinds, single impurities immersed in a host quantum gas, and quantum mixtures of two interacting gases. We restrict the discussion to single harmonic or flat traps, predominantly in a three-dimensional configuration. A selection of results on recent experiments and possible interesting future directions are given.
Related papers
- Novel ground states and emergent quantum many-body scars in a two-species Rydberg atom array [9.501699961650854]
Rydberg atom array has been established as one appealing platform for quantum simulation and quantum computation.
Recent development of trapping and controlling two-species atoms using optical tweezer arrays has brought more complex interactions.
We find some novel quantum states that cannot exist in traditional cold-atom platforms.
arXiv Detail & Related papers (2024-08-28T17:36:10Z) - Production and stabilization of a spin mixture of ultracold dipolar Bose gases [39.58317527488534]
We present experimental results for a mixture composed of the two lowest Zeeman states of $162$Dy atoms.
Due to an interference phenomenon, the rate for such inelastic processes is dramatically reduced with respect to the Wigner threshold law.
arXiv Detail & Related papers (2024-07-11T17:37:01Z) - Multiparticle quantum walk: a dynamical probe of topological many-body
excitations [0.0]
Recent experiments demonstrated that single-particle quantum walks can reveal the topological properties of single-particle states.
We generalize this picture to the many-body realm by focusing on multiparticle quantum walks of strongly interacting fermions.
arXiv Detail & Related papers (2022-09-08T05:32:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Multi-band Bose-Einstein condensate at four-particle scattering
resonance [47.187609203210705]
We show that magnon quantization for thin samples results in a new multi-band magnon condensate.
The most stable multi-band condensate is found in a narrow regime favoured on account of a resonance in the scattering between two bands.
arXiv Detail & Related papers (2022-01-26T16:32:58Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Probing the edge between integrability and quantum chaos in interacting
few-atom systems [0.0]
We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials.
We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen.
arXiv Detail & Related papers (2021-04-27T01:40:02Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Many-Body Physics with Individually-Controlled Rydberg Atoms [0.0]
Systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems.
We review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
arXiv Detail & Related papers (2020-02-18T07:26:05Z) - Simulating artificial one-dimensional physics with ultra-cold fermionic
atoms: three exemplary themes [0.0]
We go over the current experimental progress in exploring the curious one-dimensional quantum world of fermions.
We go over the current experimental progress in exploring the curious one-dimensional quantum world of fermions.
arXiv Detail & Related papers (2020-01-13T13:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.