Concept Visualization: Explaining the CLIP Multi-modal Embedding Using WordNet
- URL: http://arxiv.org/abs/2405.14563v1
- Date: Thu, 23 May 2024 13:41:17 GMT
- Title: Concept Visualization: Explaining the CLIP Multi-modal Embedding Using WordNet
- Authors: Loris Giulivi, Giacomo Boracchi,
- Abstract summary: We propose a novel saliency methodology that explains the CLIP embedding of an image by exploiting the multi-modal nature of the embeddings.
ConVis makes use of lexical information from WordNet to compute task-agnostic Saliency Maps for any concept, not limited to concepts the end model was trained on.
- Score: 4.597864989500202
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advances in multi-modal embeddings, and in particular CLIP, have recently driven several breakthroughs in Computer Vision (CV). CLIP has shown impressive performance on a variety of tasks, yet, its inherently opaque architecture may hinder the application of models employing CLIP as backbone, especially in fields where trust and model explainability are imperative, such as in the medical domain. Current explanation methodologies for CV models rely on Saliency Maps computed through gradient analysis or input perturbation. However, these Saliency Maps can only be computed to explain classes relevant to the end task, often smaller in scope than the backbone training classes. In the context of models implementing CLIP as their vision backbone, a substantial portion of the information embedded within the learned representations is thus left unexplained. In this work, we propose Concept Visualization (ConVis), a novel saliency methodology that explains the CLIP embedding of an image by exploiting the multi-modal nature of the embeddings. ConVis makes use of lexical information from WordNet to compute task-agnostic Saliency Maps for any concept, not limited to concepts the end model was trained on. We validate our use of WordNet via an out of distribution detection experiment, and test ConVis on an object localization benchmark, showing that Concept Visualizations correctly identify and localize the image's semantic content. Additionally, we perform a user study demonstrating that our methodology can give users insight on the model's functioning.
Related papers
- Diffusion Feedback Helps CLIP See Better [40.125318318373715]
Contrastive Language-Image Pre-training (CLIP) excels at abstracting open-world representations across domains and modalities.
CLIP has severe visual shortcomings, such as which can hardly distinguish orientation, quantity, color, structure.
We present a post-training approach for CLIP models, which largely overcomes its visual shortcomings via a self-supervised diffusion process.
arXiv Detail & Related papers (2024-07-29T17:00:09Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Concept-Guided Prompt Learning for Generalization in Vision-Language
Models [33.361744437967126]
We propose Concept-Guided Prompt Learning for vision-language models.
We leverage the well-learned knowledge of Contrastive Language-Image Pretraining to create a visual concept cache.
In order to refine the text features, we develop a projector that transforms multi-level visual features into text features.
arXiv Detail & Related papers (2024-01-15T04:04:47Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
This paper presents a novel concept learning framework for enhancing model interpretability and performance in visual classification tasks.
Our approach appends an unsupervised explanation generator to the primary classifier network and makes use of adversarial training.
This work presents a significant step towards building inherently interpretable deep vision models with task-aligned concept representations.
arXiv Detail & Related papers (2024-01-09T16:16:16Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z) - Contrastive Language-Image Pre-Training with Knowledge Graphs [33.211811772961234]
We propose a knowledge-based pre-training framework, dubbed Knowledge-CLIP, which injects semantic information into the widely used CLIP model.
Our model can semantically align the representations in vision and language with higher quality, and enhance the reasoning ability across scenarios and modalities.
arXiv Detail & Related papers (2022-10-17T09:49:22Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR)
Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner.
Experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets.
arXiv Detail & Related papers (2022-05-03T17:39:27Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.