DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
- URL: http://arxiv.org/abs/2505.04410v1
- Date: Wed, 07 May 2025 13:46:34 GMT
- Title: DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception
- Authors: Junjie Wang, Bin Chen, Yulin Li, Bin Kang, Yichi Chen, Zhuotao Tian,
- Abstract summary: DeCLIP is a novel framework that enhances CLIP with content'' and context'' features respectively.<n>It significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks.
- Score: 21.87721909270275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense visual prediction tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense prediction often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. The ``content'' features are aligned with image crop representations to improve local discriminability, while ``context'' features learn to retain the spatial correlations under the guidance of vision foundation models, such as DINO. Extensive experiments demonstrate that DeCLIP significantly outperforms existing methods across multiple open-vocabulary dense prediction tasks, including object detection and semantic segmentation. Code is available at \textcolor{magenta}{https://github.com/xiaomoguhz/DeCLIP}.
Related papers
- Helping CLIP See Both the Forest and the Trees: A Decomposition and Description Approach [43.419607730361996]
Vision-Language Models (VLMs) like CLIP achieve cross-modal alignment through contrastive learning.<n>Traditional prompt engineering relies on coarse-grained category labels, neglecting fine-grained local semantics.<n>We propose a plug-and-play solution that enables CLIP to process localized visual descriptors.
arXiv Detail & Related papers (2025-07-04T10:24:26Z) - Interpretable Zero-Shot Learning with Locally-Aligned Vision-Language Model [56.573203512455706]
Large-scale vision-language models (VLMs) have achieved remarkable success in zero-shot learning (ZSL) by leveraging large-scale visual-text pair datasets.<n>One approach to address this issue is to develop interpretable models by integrating language.<n>We propose LaZSL, a locally-aligned vision-language model for interpretable ZSL.
arXiv Detail & Related papers (2025-06-30T13:14:46Z) - Refining CLIP's Spatial Awareness: A Visual-Centric Perspective [10.936397225984107]
Contrastive Language-Image Pre-training excels in global alignment with language but exhibits limited sensitivity to spatial information.<n>Recent approaches have introduced Region-Language Alignment to enhance CLIP's performance in dense multimodal tasks.<n>We propose the Spatial Correlation Distillation (SCD) framework, which preserves CLIP's inherent spatial structure and mitigates the above degradation.
arXiv Detail & Related papers (2025-04-03T07:04:56Z) - ResCLIP: Residual Attention for Training-free Dense Vision-language Inference [27.551367463011008]
Cross-correlation of self-attention in CLIP's non-final layers also exhibits localization properties.
We propose the Residual Cross-correlation Self-attention (RCS) module, which leverages the cross-correlation self-attention from intermediate layers to remold the attention in the final block.
The RCS module effectively reorganizes spatial information, unleashing the localization potential within CLIP for dense vision-language inference.
arXiv Detail & Related papers (2024-11-24T14:14:14Z) - ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference [32.852004564832455]
We re-investigate the architecture of CLIP, and identify residual connections as the primary source of noise that degrades segmentation quality.
We propose ClearCLIP, a novel approach that decomposes CLIP's representations to enhance open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-07-17T09:52:20Z) - Explore the Potential of CLIP for Training-Free Open Vocabulary Semantic Segmentation [38.16802763051431]
We propose CLIPtrase, a training-free semantic segmentation strategy.
It enhances local feature awareness through recalibrated self-correlation among patches.
Experiments show that we are 22.3% ahead of CLIP on average on 9 segmentation benchmarks.
arXiv Detail & Related papers (2024-07-11T08:12:16Z) - UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding [90.74967596080982]
This paper extends Contrastive Language-Image Pre-training (CLIP) with multi-granularity alignment.
We develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities.
With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks.
arXiv Detail & Related papers (2024-01-12T06:35:09Z) - Open-Vocabulary Segmentation with Semantic-Assisted Calibration [68.41025728960176]
We study open-vocabulary segmentation (OVS) through calibrating in-vocabulary and domain-biased embedding space with contextual prior of CLIP.<n>We present a Semantic-assisted CAlibration Network (SCAN) to achieve state-of-the-art performance on open-vocabulary segmentation benchmarks.
arXiv Detail & Related papers (2023-12-07T07:00:09Z) - CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense
Prediction [67.43527289422978]
We propose an approach named CLIPSelf, which adapts the image-level recognition ability of CLIP ViT to local image regions without needing any region-text pairs.
We achieve new state-of-the-art performance on open-vocabulary object detection, semantic segmentation, and panoptic segmentation across various benchmarks.
arXiv Detail & Related papers (2023-10-02T17:58:52Z) - Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot
Anomaly Localization [63.61093388441298]
Contrastive Language-Image Pre-training models have shown promising performance on zero-shot visual recognition tasks.
In this work, we propose AnoCLIP for zero-shot anomaly localization.
arXiv Detail & Related papers (2023-08-30T10:35:36Z) - A Closer Look at the Explainability of Contrastive Language-Image Pre-training [16.10032166963232]
Contrastive language-image pre-training (CLIP) is a powerful vision-language model that has shown great benefits for various tasks.
We have identified some issues with its explainability, which undermine its credibility and limit the capacity for related tasks.
We propose the CLIP Surgery for reliable CAM, a method that allows surgery-like modifications to the inference architecture and features.
arXiv Detail & Related papers (2023-04-12T07:16:55Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.