論文の概要: AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents
- arxiv url: http://arxiv.org/abs/2405.14573v2
- Date: Mon, 10 Jun 2024 17:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:45:08.667291
- Title: AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents
- Title(参考訳): AndroidWorld: 自律エージェントのための動的ベンチマーク環境
- Authors: Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry, Divya Tyamagundlu, Timothy Lillicrap, Oriana Riva,
- Abstract要約: 私たちは、20の現実世界のAndroidアプリに116のプログラムタスクの報酬信号を提供する、完全に機能するAndroid環境であるAndroidWorldを紹介します。
AndroidWorldのメリットと運用モードを示すために、新しいコンピュータ制御エージェントM3Aを導入する。M3Aは、AndroidWorldのタスクの30.6%を完了し、将来の作業に十分な余地を残している。
- 参考スコア(独自算出の注目度): 5.044046039265116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents that execute human tasks by controlling computers can enhance human productivity and application accessibility. However, progress in this field will be driven by realistic and reproducible benchmarks. We present AndroidWorld, a fully functional Android environment that provides reward signals for 116 programmatic tasks across 20 real-world Android apps. Unlike existing interactive environments, which provide a static test set, AndroidWorld dynamically constructs tasks that are parameterized and expressed in natural language in unlimited ways, thus enabling testing on a much larger and more realistic suite of tasks. Reward signals are derived from the computer's system state, making them durable across task variations and extensible across different apps. To demonstrate AndroidWorld's benefits and mode of operation, we introduce a new computer control agent, M3A. M3A can complete 30.6% of the AndroidWorld's tasks, leaving ample room for future work. Furthermore, we adapt a popular desktop web agent to work on Android, which we find to be less effective on mobile, suggesting future research is needed to achieve universal, cross-domain agents. Finally, we conduct a robustness analysis by testing M3A against a range of task variations on a representative subset of tasks, demonstrating that variations in task parameters can significantly alter a task's complexity and, consequently, an agent's performance, highlighting the importance of testing agents under diverse conditions. AndroidWorld and the experiments in this paper are available at https://github.com/google-research/android_world.
- Abstract(参考訳): コンピュータを制御することで人間のタスクを実行する自律エージェントは、人間の生産性とアプリケーションアクセシビリティを高めることができる。
しかし、この分野の進歩は現実的で再現可能なベンチマークによって推進される。
私たちは、20の現実世界のAndroidアプリに116のプログラムタスクの報酬信号を提供する、完全に機能するAndroid環境であるAndroidWorldを紹介します。
静的なテストセットを提供する既存のインタラクティブ環境とは異なり、AndroidWorldはパラメータ化され、自然言語で無制限に表現されるタスクを動的に構築する。
リワード信号はコンピュータのシステム状態から導出され、タスクのバリエーションにまたがって耐久性があり、異なるアプリ間で拡張可能である。
AndroidWorldのメリットと運用モードを示すために,新しいコンピュータ制御エージェントM3Aを導入する。
M3Aは、AndroidWorldのタスクの30.6%を完了でき、将来の作業に十分な余地を残している。
さらに、人気のあるデスクトップウェブエージェントをAndroid上で動作させることで、モバイルでは効果が低く、クロスドメインエージェントの実現には将来的な研究が必要であることを示唆している。
最後に、タスクの代表的なサブセット上でのタスク変動に対するM3Aのテストによるロバストネス解析を行い、タスクパラメータの変動がタスクの複雑さを著しく変化させることを示した。
AndroidWorldとこの論文の実験はhttps://github.com/google-research/android_world.comで公開されている。
関連論文リスト
- SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agent。
SPA-Benchは3つの重要なコントリビューションを提供している。 英語と中国語の両方で、システムとサードパーティアプリをカバーする多様なタスクセットで、日々のルーチンで一般的に使用される機能に焦点を当てている。
複数の次元にまたがってエージェントのパフォーマンスを自動的に評価する新しい評価パイプラインは、タスク完了とリソース消費に関連する7つの指標を含んでいる。
論文 参考訳(メタデータ) (2024-10-19T17:28:48Z) - Towards Open-World Mobile Manipulation in Homes: Lessons from the Neurips 2023 HomeRobot Open Vocabulary Mobile Manipulation Challenge [93.4434417387526]
ロボット工学における鍵となるベンチマークタスクとして,Open Vocabulary Mobile Manipulationを提案する。
我々は,この課題に対する解決策を評価するために,シミュレーションと実世界のコンポーネントを兼ね備えたNeurIPS 2023コンペティションを組織した。
シミュレーションと実環境設定の両方で使用される結果と方法論を詳述する。
論文 参考訳(メタデータ) (2024-07-09T15:15:01Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crabは、クロス環境タスクをサポートするように設計された最初のベンチマークフレームワークである。
私たちのフレームワークは複数のデバイスをサポートし、Pythonインターフェースで簡単に任意の環境に拡張できます。
実験の結果、GPT-4oの1剤が38.01%の最高完成率を達成することが示された。
論文 参考訳(メタデータ) (2024-07-01T17:55:04Z) - MobileAgentBench: An Efficient and User-Friendly Benchmark for Mobile LLM Agents [7.4568642040547894]
大規模言語モデル(LLM)ベースのモバイルエージェントは、携帯電話のグラフィカルユーザインタフェース(GUI)と直接対話できることから、ますます人気が高まっている。
学術部門と産業部門の両方で有望な見通しにもかかわらず、既存のモバイルエージェントのパフォーマンスをベンチマークすることに注力する研究はほとんどない。
我々は、広範囲な手動テストの負担を軽減するために、効率的でユーザフレンドリなベンチマークMobileAgentBenchを提案する。
論文 参考訳(メタデータ) (2024-06-12T13:14:50Z) - Benchmarking Mobile Device Control Agents across Diverse Configurations [19.01954948183538]
B-MoCAは、モバイルデバイス制御エージェントの評価と開発のためのベンチマークである。
我々は,大規模言語モデル (LLM) やマルチモーダル LLM を用いたエージェントを含む多種多様なエージェントをベンチマークする。
これらのエージェントは、簡単なタスクの実行の熟練度を示す一方で、複雑なタスクにおけるパフォーマンスの低さは、将来の研究が有効性を改善するための重要な機会を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-25T14:56:32Z) - OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments [87.41051677852231]
マルチモーダルエージェントのための,第1世代のスケーラブルな実コンピュータ環境であるOSWorldを紹介する。
OSWorldは、オープンエンドのコンピュータタスクを評価する統合されたコンピュータ環境として機能する。
オープンドメインの実際のWebおよびデスクトップアプリケーション、OSファイルI/O、複数のアプリケーションにまたがる369のコンピュータタスクのベンチマークを作成します。
論文 参考訳(メタデータ) (2024-04-11T17:56:05Z) - WebArena: A Realistic Web Environment for Building Autonomous Agents [92.3291458543633]
我々は、非常に現実的で再現可能な言語誘導エージェントのための環境を構築する。
我々は,Web上でタスクを実行するエージェントに着目し,4つの共通ドメインから完全に機能するWebサイトを持つ環境を構築する。
タスク完了の関数的正しさを評価することに焦点を当てたベンチマークタスクのセットをリリースする。
論文 参考訳(メタデータ) (2023-07-25T22:59:32Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) は、目に見えない環境で任意のオブジェクトを選択し、命令された場所に配置する問題である。
HomeRobotには2つのコンポーネントがある。シミュレーションコンポーネントは、新しい高品質のマルチルームホーム環境に、大規模で多様なキュレートされたオブジェクトセットを使用する。
論文 参考訳(メタデータ) (2023-06-20T14:30:32Z) - Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction [28.53259866617677]
Android モバイル環境で GUI ベンチマークを作成するための総合ツールキットである Mobile-Env を紹介した。
我々は、さまざまな現実世界のアプリにまたがるオープンワールドのタスクと、固定されたワールドセットWikiHowを収集し、大量の動的オンラインコンテンツをキャプチャする。
我々の研究結果によると、高度なモデルでさえ、人間にとって比較的簡単なタスクに苦しむことがわかった。
論文 参考訳(メタデータ) (2023-05-14T12:31:03Z) - ALAN: Autonomously Exploring Robotic Agents in the Real World [28.65531878636441]
ALANは自律的なロボットエージェントで、ほとんどトレーニングや対話の時間なしで現実世界でタスクを実行できる。
これは、物体の動きを反映し、ロボットの位置の変化を無視する環境変化を測定することで実現される。
我々は,ロボットが操作スキルを効率的に探索し,発見することを可能にするために,2つの異なる実世界のプレイキッチン設定に対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-02-13T18:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。