Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
- URL: http://arxiv.org/abs/2405.14630v1
- Date: Thu, 23 May 2024 14:36:52 GMT
- Title: Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension
- Authors: Kedar Karhadkar, Michael Murray, Guido Montúfar,
- Abstract summary: Bounds on the smallest eigenvalue of the neural tangent kernel (NTK) are a key ingredient in the analysis of neural network optimization and memorization.
We prove our results through a novel application of the hemisphere transform.
- Score: 20.431551512846248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bounds on the smallest eigenvalue of the neural tangent kernel (NTK) are a key ingredient in the analysis of neural network optimization and memorization. However, existing results require distributional assumptions on the data and are limited to a high-dimensional setting, where the input dimension $d_0$ scales at least logarithmically in the number of samples $n$. In this work we remove both of these requirements and instead provide bounds in terms of a measure of the collinearity of the data: notably these bounds hold with high probability even when $d_0$ is held constant versus $n$. We prove our results through a novel application of the hemisphere transform.
Related papers
- Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods [43.32546195968771]
We study the data-dependent convergence and generalization behavior of gradient methods for neural networks with smooth activation.
Our results improve upon the shortcomings of the well-established Rademacher complexity-based bounds.
We show that a large step-size significantly improves upon the NTK regime's results in classifying the XOR distribution.
arXiv Detail & Related papers (2024-10-13T21:49:29Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Effective Minkowski Dimension of Deep Nonparametric Regression: Function
Approximation and Statistical Theories [70.90012822736988]
Existing theories on deep nonparametric regression have shown that when the input data lie on a low-dimensional manifold, deep neural networks can adapt to intrinsic data structures.
This paper introduces a relaxed assumption that input data are concentrated around a subset of $mathbbRd$ denoted by $mathcalS$, and the intrinsic dimension $mathcalS$ can be characterized by a new complexity notation -- effective Minkowski dimension.
arXiv Detail & Related papers (2023-06-26T17:13:31Z) - High-Dimensional Smoothed Entropy Estimation via Dimensionality
Reduction [14.53979700025531]
We consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$.
Under the absolute-error loss, the above problem has a parametric estimation rate of $fraccDsqrtn$.
We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation.
arXiv Detail & Related papers (2023-05-08T13:51:48Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Nystr\"om Kernel Mean Embeddings [92.10208929236826]
We propose an efficient approximation procedure based on the Nystr"om method.
It yields sufficient conditions on the subsample size to obtain the standard $n-1/2$ rate.
We discuss applications of this result for the approximation of the maximum mean discrepancy and quadrature rules.
arXiv Detail & Related papers (2022-01-31T08:26:06Z) - Intrinsic Dimension Estimation [92.87600241234344]
We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees.
We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending on the intrinsic dimension of the data.
arXiv Detail & Related papers (2021-06-08T00:05:39Z) - Fundamental tradeoffs between memorization and robustness in random
features and neural tangent regimes [15.76663241036412]
We prove for a large class of activation functions that, if the model memorizes even a fraction of the training, then its Sobolev-seminorm is lower-bounded.
Experiments reveal for the first time, (iv) a multiple-descent phenomenon in the robustness of the min-norm interpolator.
arXiv Detail & Related papers (2021-06-04T17:52:50Z) - Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for
Deep ReLU Networks [21.13299067136635]
We provide tight bounds on the smallest eigenvalue of NTK matrices for deep ReLU networks.
In the finite-width setting, the network architectures we consider are quite general.
arXiv Detail & Related papers (2020-12-21T19:32:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.