PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis
- URL: http://arxiv.org/abs/2405.14650v2
- Date: Tue, 25 Mar 2025 03:51:46 GMT
- Title: PhiNets: Brain-inspired Non-contrastive Learning Based on Temporal Prediction Hypothesis
- Authors: Satoki Ishikawa, Makoto Yamada, Han Bao, Yuki Takezawa,
- Abstract summary: We propose PhiNet, an extension of SimSiam to have two predictors explicitly corresponding to the CA3 and CA1.<n>Our work reveals that the temporal prediction hypothesis is a reasonable model in terms of the robustness and adaptivity.
- Score: 15.721203529567967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive coding is a theory which hypothesises that cortex predicts sensory inputs at various levels of abstraction to minimise prediction errors. Inspired by predictive coding, Chen et al. (2024) proposed another theory, temporal prediction hypothesis, to claim that sequence memory residing in hippocampus has emerged through predicting input signals from the past sensory inputs. Specifically, they supposed that the CA3 predictor in hippocampus creates synaptic delay between input signals, which is compensated by the following CA1 predictor. Though recorded neural activities were replicated based on the temporal prediction hypothesis, its validity has not been fully explored. In this work, we aim to explore the temporal prediction hypothesis from the perspective of self-supervised learning. Specifically, we focus on non-contrastive learning, which generates two augmented views of an input image and predicts one from another. Non-contrastive learning is intimately related to the temporal prediction hypothesis because the synaptic delay is implicitly created by StopGradient. Building upon a popular non-contrastive learner, SimSiam, we propose PhiNet, an extension of SimSiam to have two predictors explicitly corresponding to the CA3 and CA1, respectively. Through studying the PhiNet model, we discover two findings. First, meaningful data representations emerge in PhiNet more stably than in SimSiam. This is initially supported by our learning dynamics analysis: PhiNet is more robust to the representational collapse. Second, PhiNet adapts more quickly to newly incoming patterns in online and continual learning scenarios. For practitioners, we additionally propose an extension called X-PhiNet integrated with a momentum encoder, excelling in continual learning. All in all, our work reveals that the temporal prediction hypothesis is a reasonable model in terms of the robustness and adaptivity.
Related papers
- Meta-Representational Predictive Coding: Biomimetic Self-Supervised Learning [51.22185316175418]
We present a new form of predictive coding that we call meta-representational predictive coding (MPC)
MPC sidesteps the need for learning a generative model of sensory input by learning to predict representations of sensory input across parallel streams.
arXiv Detail & Related papers (2025-03-22T22:13:14Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
We focus on a task called inductive few-shot knowledge graph completion (I-FKGC)
Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem.
We present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions.
In the second module, based on the hypothesis, we propose a graph attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis.
arXiv Detail & Related papers (2024-08-03T13:37:40Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.
The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - A Neural Network Implementation for Free Energy Principle [3.7937771805690392]
The free energy principle (FEP) has been widely applied to account for various problems in fields such as cognitive science, neuroscience, social interaction, and hermeneutics.
This paper gives a preliminary attempt at bridging FEP and machine learning, via a classical neural network model, the Helmholtz machine.
Although the Helmholtz machine is not temporal, it gives an ideal parallel to the vanilla FEP and the hierarchical model of the brain, under which the active inference and predictive coding could be formulated coherently.
arXiv Detail & Related papers (2023-06-11T22:14:21Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
We propose a bio-plausible meta-learning model inspired by the hippocampus and the prefrontal cortex.
Our new model can easily be applied to spike-based neuromorphic devices and enables fast learning in neuromorphic hardware.
arXiv Detail & Related papers (2023-06-07T13:08:46Z) - DeFeeNet: Consecutive 3D Human Motion Prediction with Deviation Feedback [23.687223152464988]
We propose DeFeeNet, a simple yet effective network that can be added on existing one-off prediction models.
We show that our proposed network improves consecutive human motion prediction performance regardless of the basic model.
arXiv Detail & Related papers (2023-04-10T10:18:23Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - Pyramidal Predictive Network: A Model for Visual-frame Prediction Based
on Predictive Coding Theory [1.4610038284393165]
We propose a novel neural network model for the task of visual-frame prediction.
The model is composed of a series of recurrent and convolutional units forming the top-down and bottom-up streams.
It learns to predict future frames in a visual sequence, with ConvLSTMs on each layer in the network making local prediction from top to down.
arXiv Detail & Related papers (2022-08-15T06:28:34Z) - Overlooked Poses Actually Make Sense: Distilling Privileged Knowledge
for Human Motion Prediction [26.25110973770013]
Previous works on human motion prediction follow the pattern of building a mapping relation between the sequence observed and the one to be predicted.
We present a new prediction pattern, which introduces previously overlooked human poses, to implement the prediction task.
These poses exist after the predicted sequence, and form the privileged sequence.
arXiv Detail & Related papers (2022-08-02T08:13:43Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - Latent Equilibrium: A unified learning theory for arbitrarily fast
computation with arbitrarily slow neurons [0.7340017786387767]
We introduce Latent Equilibrium, a new framework for inference and learning in networks of slow components.
We derive disentangled neuron and synapse dynamics from a prospective energy function.
We show how our principle can be applied to detailed models of cortical microcircuitry.
arXiv Detail & Related papers (2021-10-27T16:15:55Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.