論文の概要: StyleX: A Trainable Metric for X-ray Style Distances
- arxiv url: http://arxiv.org/abs/2405.14718v1
- Date: Thu, 23 May 2024 15:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 14:06:33.657337
- Title: StyleX: A Trainable Metric for X-ray Style Distances
- Title(参考訳): StyleX: X線スタイル距離のトレーニング可能なメトリック
- Authors: Dominik Eckert, Christopher Syben, Christian Hümmer, Ludwig Ritschl, Steffen Kappler, Sebastian Stober,
- Abstract要約: 本稿では,非マッチング画像ペアのスタイル差を定量化する,新しいディープラーニングベースのメトリクスを提案する。
私たちのメトリクスの中心は、X線画像スタイルの表現を生成するエンコーダです。
- 参考スコア(独自算出の注目度): 0.8494389481969081
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The progression of X-ray technology introduces diverse image styles that need to be adapted to the preferences of radiologists. To support this task, we introduce a novel deep learning-based metric that quantifies style differences of non-matching image pairs. At the heart of our metric is an encoder capable of generating X-ray image style representations. This encoder is trained without any explicit knowledge of style distances by exploiting Simple Siamese learning. During inference, the style representations produced by the encoder are used to calculate a distance metric for non-matching image pairs. Our experiments investigate the proposed concept for a disclosed reproducible and a proprietary image processing pipeline along two dimensions: First, we use a t-distributed stochastic neighbor embedding (t-SNE) analysis to illustrate that the encoder outputs provide meaningful and discriminative style representations. Second, the proposed metric calculated from the encoder outputs is shown to quantify style distances for non-matching pairs in good alignment with the human perception. These results confirm that our proposed method is a promising technique to quantify style differences, which can be used for guided style selection as well as automatic optimization of image pipeline parameters.
- Abstract(参考訳): X線技術の進歩は、放射線学者の好みに適応する必要がある多様な画像スタイルを導入している。
この課題を支援するために,非マッチング画像ペアのスタイルの違いを定量化する,新しいディープラーニングベースのメトリクスを導入する。
私たちのメトリクスの中心は、X線画像スタイルの表現を生成するエンコーダです。
このエンコーダは、単純なシームズ学習を利用して、スタイル距離の明示的な知識なしで訓練される。
推論中、エンコーダによって生成されるスタイル表現を用いて、非マッチング画像対の距離メトリックを算出する。
まず、t分散確率的隣接埋め込み(t-SNE)解析を用いて、エンコーダ出力が有意かつ識別的なスタイル表現を提供することを示す。
第二に、エンコーダ出力から算出した提案指標は、人間の知覚とよく一致した非マッチングペアのスタイル距離を定量化する。
これらの結果から,提案手法はスタイルの差分を定量化するための有望な手法であることが確認された。
関連論文リスト
- ConDL: Detector-Free Dense Image Matching [2.7582789611575897]
本稿では,高密度画像の対応性を推定するためのディープラーニングフレームワークを提案する。
我々の完全畳み込みモデルは画像の高密度な特徴マップを生成し、各ピクセルは複数の画像にマッチするディスクリプタに関連付けられている。
論文 参考訳(メタデータ) (2024-08-05T18:34:15Z) - StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis [112.25071764647683]
StrokeNUWAはベクターグラフィックスにおけるより良い視覚表現'ストロークトークン'を探求する先駆的な研究である。
ストロークトークンを備えたStrokeNUWAは、従来のLCMベースの最適化ベースのメソッドを大幅に上回ることができる。
StrokeNUWAは、SVGコード圧縮比が6.9%の従来の手法よりも94倍のスピードアップを達成している。
論文 参考訳(メタデータ) (2024-01-30T15:20:26Z) - Explicit Correspondence Matching for Generalizable Neural Radiance
Fields [49.49773108695526]
本稿では,新たな未知のシナリオに一般化し,2つのソースビューで新規なビュー合成を行う新しいNeRF手法を提案する。
明瞭な対応マッチングは、異なるビュー上の3Dポイントの2次元投影でサンプリングされた画像特徴間のコサイン類似度と定量化される。
実験では,実験結果から得られたコサイン特徴の類似性と体積密度との間に強い相関関係が認められた。
論文 参考訳(メタデータ) (2023-04-24T17:46:01Z) - Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images [7.428474910083337]
本稿では,非剛性画像対応タスクの正マッチ数を最大化するために,新しい学習キーポイント検出手法を提案する。
我々のトレーニングフレームワークは、アノテートされた画像対と予め定義された記述子抽出器をマッチングして得られる真の対応を利用して、畳み込みニューラルネットワーク(CNN)を訓練する。
実験の結果,本手法は平均整合精度で20時までに非剛体物体の実像に対して,最先端のキーポイント検出器よりも優れていた。
論文 参考訳(メタデータ) (2022-12-13T11:59:09Z) - Memory-Driven Text-to-Image Generation [126.58244124144827]
本稿では,メモリ駆動型半パラメトリックによるテキスト・ツー・イメージ生成手法を提案する。
非パラメトリック成分は、画像のトレーニングセットから構築された画像特徴のメモリバンクである。
パラメトリック成分は 生成的敵ネットワークです
論文 参考訳(メタデータ) (2022-08-15T06:32:57Z) - Learning Diverse Tone Styles for Image Retouching [73.60013618215328]
本稿では,フローベースアーキテクチャの標準化により,多様な画像のリタッチを学習することを提案する。
ジョイントトレーニングパイプラインは、スタイルエンコーダ、条件付きRetouchNet、イメージトーンスタイル正規化フロー(TSFlow)モジュールで構成される。
提案手法は最先端の手法に対して良好に動作し,多様な結果を生成するのに有効である。
論文 参考訳(メタデータ) (2022-07-12T09:49:21Z) - Towards Interpretable Deep Metric Learning with Structural Matching [86.16700459215383]
より透過的な埋め込み学習のための深層解釈可能なメトリック学習(DIML)法を提案する。
本手法は,既製のバックボーンネットワークやメトリック学習手法に適用可能な,モデルに依存しない手法である。
我々は,CUB200-2011,Cars196,Stanford Online Productsの3つの大規模メトリクス学習ベンチマークで評価を行った。
論文 参考訳(メタデータ) (2021-08-12T17:59:09Z) - Semantic similarity metrics for learned image registration [10.355938901584565]
画像登録のための意味的類似度尺度を提案する。
このアプローチは、学習に基づく登録モデルの最適化を促進するデータセット固有の特徴を学習する。
自動エンコーダを用いた非監視的アプローチと、補助セグメンテーションデータを用いた半監督的アプローチの両方をトレーニングし、画像登録のための意味的特徴を抽出します。
論文 参考訳(メタデータ) (2021-04-20T15:23:58Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Fast Distance-based Anomaly Detection in Images Using an Inception-like
Autoencoder [16.157879279661362]
畳み込みオートエンコーダ(CAE)を訓練し、画像の低次元表現を抽出する。
画像の学習表現の低次元空間に距離ベースの異常検出器を用いる。
その結果,予測性能が向上した。
論文 参考訳(メタデータ) (2020-03-12T16:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。