HC-GAE: The Hierarchical Cluster-based Graph Auto-Encoder for Graph Representation Learning
- URL: http://arxiv.org/abs/2405.14742v1
- Date: Thu, 23 May 2024 16:08:04 GMT
- Title: HC-GAE: The Hierarchical Cluster-based Graph Auto-Encoder for Graph Representation Learning
- Authors: Zhuo Xu, Lu Bai, Lixin Cui, Ming Li, Yue Wang, Edwin R. Hancock,
- Abstract summary: We develop a novel Hierarchical Cluster-based GAE (HC-GAE) that can learn effective structural characteristics for graph data analysis.
The proposed HC-GAE can generate effective representations for either node classification or graph classification, and the experiments demonstrate the effectiveness on real-world datasets.
- Score: 24.641827220223682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Auto-Encoders (GAEs) are powerful tools for graph representation learning. In this paper, we develop a novel Hierarchical Cluster-based GAE (HC-GAE), that can learn effective structural characteristics for graph data analysis. To this end, during the encoding process, we commence by utilizing the hard node assignment to decompose a sample graph into a family of separated subgraphs. We compress each subgraph into a coarsened node, transforming the original graph into a coarsened graph. On the other hand, during the decoding process, we adopt the soft node assignment to reconstruct the original graph structure by expanding the coarsened nodes. By hierarchically performing the above compressing procedure during the decoding process as well as the expanding procedure during the decoding process, the proposed HC-GAE can effectively extract bidirectionally hierarchical structural features of the original sample graph. Furthermore, we re-design the loss function that can integrate the information from either the encoder or the decoder. Since the associated graph convolution operation of the proposed HC-GAE is restricted in each individual separated subgraph and cannot propagate the node information between different subgraphs, the proposed HC-GAE can significantly reduce the over-smoothing problem arising in the classical convolution-based GAEs. The proposed HC-GAE can generate effective representations for either node classification or graph classification, and the experiments demonstrate the effectiveness on real-world datasets.
Related papers
- Contrastive Graph Condensation: Advancing Data Versatility through Self-Supervised Learning [47.74244053386216]
Graph condensation is a promising solution to synthesize a compact, substitute graph of the large-scale original graph.
We introduce Contrastive Graph Condensation (CTGC), which adopts a self-supervised surrogate task to extract critical, causal information from the original graph.
CTGC excels in handling various downstream tasks with a limited number of labels, consistently outperforming state-of-the-art GC methods.
arXiv Detail & Related papers (2024-11-26T03:01:22Z) - GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction [6.817416560637197]
Graph autoencoders (GAEs) reconstruct graph structures from node embeddings.
We introduce a cross-correlation mechanism that significantly enhances the GAE representational capabilities.
We also propose GraphCroc, a new GAE that supports flexible encoder architectures tailored for various downstream tasks.
arXiv Detail & Related papers (2024-10-04T12:59:45Z) - Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
Graph autoencoders (GAEs) rely on distance-based criteria, such as mean-square-error (MSE) to reconstruct the input graph.
relying solely on a single reconstruction criterion may lead to a loss of distinctiveness in the reconstructed graph.
We have developed a simple yet effective strategy to preserve the necessary distinctness in the reconstructed graph.
arXiv Detail & Related papers (2024-06-25T12:54:35Z) - Graph Parsing Networks [64.5041886737007]
We propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling.
The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph.
arXiv Detail & Related papers (2024-02-22T09:08:36Z) - GDM: Dual Mixup for Graph Classification with Limited Supervision [27.8982897698616]
Graph Neural Networks (GNNs) require a large number of labeled graph samples to obtain good performance on the graph classification task.
The performance of GNNs degrades significantly as the number of labeled graph samples decreases.
We propose a novel mixup-based graph augmentation method to generate new labeled graph samples.
arXiv Detail & Related papers (2023-09-18T20:17:10Z) - Transforming Graphs for Enhanced Attribute Clustering: An Innovative
Graph Transformer-Based Method [8.989218350080844]
This study introduces an innovative method known as the Graph Transformer Auto-Encoder for Graph Clustering (GTAGC)
By melding the Graph Auto-Encoder with the Graph Transformer, GTAGC is adept at capturing global dependencies between nodes.
The architecture of GTAGC encompasses graph embedding, integration of the Graph Transformer within the autoencoder structure, and a clustering component.
arXiv Detail & Related papers (2023-06-20T06:04:03Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.