Lindbladian way for the relaxation time approximation, application to Kibble-Zurek processes due to environment temperature quench, and to Lindbladian perturbation theory
- URL: http://arxiv.org/abs/2405.14825v3
- Date: Wed, 11 Sep 2024 06:41:28 GMT
- Title: Lindbladian way for the relaxation time approximation, application to Kibble-Zurek processes due to environment temperature quench, and to Lindbladian perturbation theory
- Authors: Gergő Roósz,
- Abstract summary: A global Lindbladian ansatz is constructed which leads to thermalization at temperature $T$ to the Gibs state of the investigated system.
This ansatz connects every two eigenstates of the Hamiltonian and leads to a simple master equation known in the literature as the relaxation time approximation (RTA)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the present paper, a global Lindbladian ansatz is constructed which leads to thermalization at temperature $T$ to the Gibs state of the investigated system. This ansatz connects every two eigenstates of the Hamiltonian and leads to a simple master equation known in the literature as the relaxation time approximation (RTA). The main message of this paper is that RTA, being a Lindbladian approach itself, can be used as Lindbladian securing thermalization when modeling physical processes, and can be consequently combined with other types of Lindbladians which would drive the system of the equilibrium state. I demonstrate it with two applications. The first application is the slow cooling (or heating) of quantum systems by varying the environment temperature to a critical point. With this RTA-Lindblad ansatz, one can directly relate to the equilibrium behavior of the system, and if an order parameter has the exponent $\Psi$, the remaining value at the phase transition will decrease with $1/\tau^{\Psi}$, where $\tau$ is the overall time of the slow process. In the second application, I investigate the change in the expectation value of a conserved quantity (an operator commuting with the Hamiltonian) due to an extra Lindbladian term which would drive the system out from equilibrium, while the thermalizing RTA-Lindbladian term is also present. I give a closed perturbative expression in the first order for the expectation value in the new steady state using only expectation values calculated in the original thermal equilibrium.
Related papers
- Bound state formation within the Lindblad approach [0.0]
We investigate the formation of non-relativistic bound states, involving the P"oschl-Teller potential, in order to discuss the formation time and the thermal equilibrium.
We use a reformulated Lindblad equation, in terms of a diffusion-advection equation with sources and therefore provide a hydrodynamical formulation of a dissipative quantum master equation.
arXiv Detail & Related papers (2025-03-10T14:52:15Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Macroscopic thermalization by unitary time-evolution in the weakly perturbed two-dimensional Ising model --- An application of the Roos-Teufel-Tumulka-Vogel theorem [0.0]
We study thermalization in the two-dimensional Ising model in the low-temperature phase.
It is proved that, for most choices of the random perturbation, the unitary time evolution $e-i(hatH_L+lambdahatV)t$ brings the initial state into thermal equilibrium.
arXiv Detail & Related papers (2024-09-14T10:07:01Z) - Lindbladian reverse engineering for general non-equilibrium steady states: A scalable null-space approach [49.1574468325115]
We introduce a method for reconstructing the corresponding Lindbaldian master equation given any target NESS.
The kernel (null-space) of the correlation matrix corresponds to Lindbladian solutions.
We illustrate the method in different systems, ranging from bosonic Gaussian to dissipative-driven collective spins.
arXiv Detail & Related papers (2024-08-09T19:00:18Z) - Optimization of Time-Dependent Decoherence Rates and Coherent Control
for a Qutrit System [77.34726150561087]
Incoherent control makes the decoherence rates depending on time in a specific controlled manner.
We consider the problem of maximizing the Hilbert-Schmidt overlap between the system's final state $rho(T)$ and a given target state $rho_rm target.
arXiv Detail & Related papers (2023-08-08T01:28:50Z) - Searching for Lindbladians obeying local conservation laws and showing
thermalization [0.0]
We investigate the possibility of a Markovian quantum master equation (QME) that consistently describes a finite-dimensional system.
In order to preserve complete positivity and trace, such a QME must be of Lindblad form.
We show that the microscopically derived Bloch-Redfield equation (RE) violates complete positivity unless in extremely special cases.
arXiv Detail & Related papers (2023-01-05T16:46:19Z) - Keldysh Wormholes and Anomalous Relaxation in the Dissipative
Sachdev-Ye-Kitaev Model [0.0]
We study the out-of-equilibrium dynamics of a Sachdev-Ye-Kitaev (SYK) model, $N$ fermions with a $q$-body interaction of infinite range, coupled to a Markovian environment.
Close to the infinite-temperature steady state, the real-time Lindbladian dynamics of this system is identical to the near-zero-temperature dynamics in Euclidean time.
We identify a potential gravity dual of the real-time dissipative SYK model: a double-trumpet configuration in a near-de Sitter space in two dimensions with matter
arXiv Detail & Related papers (2022-10-04T15:45:54Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Thermalization by off-shell processes: the virtues of small virtuality [0.0]
We study the thermalization of a scalar field $Phi$ coupled to two other scalar fields $chi_1,2$ that constitute a bath in thermal equilibrium.
For a range of masses the $Phi$ propagator features threshold and infrared divergences, a vanishing residue at the (quasi) particle pole and vanishing emphon-shell decay rates.
arXiv Detail & Related papers (2022-05-01T20:35:30Z) - Prethermalization, thermalization, and Fermi's golden rule in quantum
many-body systems [0.3921666708205728]
We study the prethermalization and thermalization dynamics of local observables in weakly perturbed nonintegrable systems.
We show that the slow thermalizing dynamics is characterized by a rate $propto g2$, which can be accurately determined using a Fermi golden rule (FGR) equation.
arXiv Detail & Related papers (2021-09-03T18:48:55Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Subsystem R\'enyi Entropy of Thermal Ensembles for SYK-like models [20.29920872216941]
The Sachdev-Ye-Kitaev model is an $N$-modes fermionic model with infinite range random interactions.
We study the thermal R'enyi entropy for a subsystem of the SYK model using the path-integral formalism in the large-$N$ limit.
arXiv Detail & Related papers (2020-03-21T23:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.