Thermal state preparation by repeated interactions at and beyond the Lindblad limit
- URL: http://arxiv.org/abs/2506.12166v1
- Date: Fri, 13 Jun 2025 18:34:49 GMT
- Title: Thermal state preparation by repeated interactions at and beyond the Lindblad limit
- Authors: Carlos Ramon-Escandell, Alessandro Prositto, Dvira Segal,
- Abstract summary: We study the nature of thermalization dynamics and the associated preparation (simulation) time under the repeated interaction protocol.<n>We observe a Mpemba-like effect: Starting from a maximally mixed state, thermalization to an intermediate-temperature state takes longer than to a lower-temperature one.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the nature of thermalization dynamics and the associated preparation (simulation) time under the repeated interaction protocol uncovering a generic anomalous, Mpemba-like trend. As a case study, we focus on a three-level system and analyze its dynamics in two complementary regimes, where the system-ancilla interaction strength is either large or small. Focusing on the estimation of the simulation time, we derive closed-form expressions for the minimum number of collisions, or minimal simulation time, required to achieve a thermal state, which is within $\epsilon$ distance to the target thermal state. At zero temperature, we analytically identify a set of points (interaction strength $\times$ their duration) that minimize the simulation time. At nonzero temperature, we observe a Mpemba-like effect: Starting from a maximally mixed state, thermalization to an intermediate-temperature state takes longer than to a lower-temperature one. We provide an accurate analytical approximation for this phenomenon and demonstrate its occurrence in larger systems and under randomized interaction strengths. The prevalence of the Mpemba effect in thermal state preparation presents a significant challenge for preparing states in large systems, an open problem calling for new strategies.
Related papers
- Prethermal inverse Mpemba effect [0.0]
The inverse Mpemba effect is a counterintuitive phenomenon in which a system relaxes to the final state more rapidly when starting from a lower initial temperature.<n>We extend this concept to the relaxation toward a prethermal state in isolated quantum systems.
arXiv Detail & Related papers (2025-07-07T05:20:28Z) - Expedited thermalization dynamics in incommensurate systems [4.106350459637523]
We study the thermalization dynamics of a quantum system embedded in an incommensurate potential and coupled to a Markovian thermal reservoir.<n>We find that initially localized states can relax to the homogeneous steady state faster than delocalized states.
arXiv Detail & Related papers (2025-05-06T15:51:50Z) - Accelerating the discovery of steady-states of planetary interior dynamics with machine learning [2.4608654148475235]
We present a concept for accelerating mantle convection simulations using machine learning.
We train a feedforward neural network on 97 simulations to predict steady-state temperature profiles.
The number of time steps required to reach steady-state is reduced by a median factor of 3.75.
arXiv Detail & Related papers (2024-08-30T13:55:19Z) - Temperature dependence of energy transport in the $\mathbb{Z}_3$ chiral clock model [0.0]
We study energy transport within the non-integrable regime of the one-dimensional $mathbbZ_3$ chiral clock model.
We extract the transport coefficients of the model at relatively high temperatures above both its gapless and gapped low-temperature phases.
Although we are not yet able to reach temperatures where quantum critical scaling would be observed, our approach is able to access the transport properties of the model.
arXiv Detail & Related papers (2023-10-31T18:00:30Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Finite-Time Thermodynamics of Fluctuations in Microscopic Heat Engines [1.8275108630751837]
Fluctuations of thermodynamic quantities become non-negligible when the system size is small.
We develop finite-time thermodynamics of fluctuations in microscopic heat engines.
arXiv Detail & Related papers (2021-08-19T10:19:59Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.