論文の概要: Domain Wall Magnetic Tunnel Junction Reliable Integrate and Fire Neuron
- arxiv url: http://arxiv.org/abs/2405.14851v1
- Date: Thu, 23 May 2024 17:56:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:27:25.691142
- Title: Domain Wall Magnetic Tunnel Junction Reliable Integrate and Fire Neuron
- Title(参考訳): 磁壁磁気トンネル接合の信頼性と火災ニューロン
- Authors: Can Cui1, Sam Liu, Jaesuk Kwon, Jean Anne C. Incorvia,
- Abstract要約: 本稿では,磁区壁と磁気トンネル接合を用いた人工統合火災ニューロンデバイスの設計と製造について述べる。
本研究では,磁壁-磁気トンネル接合型ニューロンデバイスにおける信頼性のある統合火炎リセットの実証実験を行った。
その結果、磁壁-磁気トンネル接合型ニューロンデバイスにおいて、信頼性の高い統合火炎リセットを初めて実現し、ニューロモルフィックコンピューティングにおけるスピントロニクスの約束を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spiking neural networks, neuron dynamics are described by the biologically realistic integrate-and-fire model that captures membrane potential accumulation and above-threshold firing behaviors. Among the hardware implementations of integrate-and-fire neuron devices, one important feature, reset, has been largely ignored. Here, we present the design and fabrication of a magnetic domain wall and magnetic tunnel junction based artificial integrate-and-fire neuron device that achieves reliable reset at the end of the integrate-fire cycle. We demonstrate the domain propagation in the domain wall racetrack (integration), reading using a magnetic tunnel junction (fire), and reset as the domain is ejected from the racetrack, showing the artificial neuron can be operated continuously over 100 integrate-fire-reset cycles. Both pulse amplitude and pulse number encoding is demonstrated. The device data is applied on an image classification task using a spiking neural network and shown to have comparable performance to an ideal leaky, integrate-and-fire neural network. These results achieve the first demonstration of reliable integrate-fire-reset in domain wall-magnetic tunnel junction-based neuron devices and shows the promise of spintronics for neuromorphic computing.
- Abstract(参考訳): スパイキングニューラルネットワークにおいて、ニューロンのダイナミクスは、膜電位の蓄積と閾値上の発射挙動をキャプチャする生物学的に現実的な統合と発射モデルによって記述される。
インテグレート・アンド・ファイア・ニューロンデバイスのハードウェア実装のうち、重要な機能であるリセットは無視されている。
本稿では,磁区壁と磁気トンネル接合を用いた人工統合火災ニューロンデバイスの設計と製造について述べる。
筆者らは, 領域壁のレーストラック(積分)における領域伝播, 磁気トンネル接合(焼成)を用いて読み出し, 走行トラックからドメインが放出されるとリセットし, 人工ニューロンを100回以上の統合火リセットサイクルで連続的に動作させることができることを示した。
パルス振幅とパルス数符号化の両方を実証する。
デバイスデータは、スパイクニューラルネットワークを用いて画像分類タスクに適用され、理想的な漏れ・統合・発火ニューラルネットワークに匹敵する性能を示す。
これらの結果は、磁壁-磁気トンネル接合型ニューロンデバイスにおける信頼性のある統合火炎リセットを初めて実現し、ニューロモルフィックコンピューティングのためのスピントロニクスの約束を示す。
関連論文リスト
- A versatile circuit for emulating active biological dendrites applied to
sound localisation and neuron imitation [0.0]
我々は,利得を示し,遅延を導入し,統合を行うデンドライトのセグメントをエミュレートする汎用回路を導入する。
また、デンドライトが破裂するニューロンを形成できることもわかりました。
この重要な発見は、デンドライト回路のみからなるニューラルネットワークを作る可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-25T09:42:24Z) - A Bio-Inspired Chaos Sensor Model Based on the Perceptron Neural
Network: Machine Learning Concept and Application for Computational
Neuro-Science [0.0]
本研究では,神経力学系におけるスパイクトレインのエントロピー推定のための知覚神経ネットワークに基づくバイオインスパイアされたカオスセンサモデルを提案する。
このモデルはスパイク信号のカオス的挙動を動的に追跡し、この情報を神経力学モデルの他の部分に送信してさらなる処理を行うことができる。
論文 参考訳(メタデータ) (2023-06-03T03:36:47Z) - Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks [0.0]
本稿では,電圧依存性の確率発火を伴うDW-MTJニューロンについて述べる。
トレーニング中の検証精度は、理想的な統合およびファイアデバイスに匹敵することを示した。
本研究は、DW-MTJデバイスを用いて、エッジ上のニューロモルフィックコンピューティングに適した耐雑音性ネットワークを構築することができることを示す。
論文 参考訳(メタデータ) (2023-04-10T18:00:26Z) - Contrastive-Signal-Dependent Plasticity: Forward-Forward Learning of
Spiking Neural Systems [73.18020682258606]
我々は、ニューロンの個々の層が並列に機能する、スパイキングニューロンユニットからなる神経模倣アーキテクチャを開発する。
コントラスト信号依存塑性(CSDP)と呼ばれるイベントベース前方学習の一般化を提案する。
いくつかのパターンデータセットに対する実験結果から,CSDPプロセスは分類と再構成の両方が可能な動的再帰スパイクネットワークのトレーニングに有効であることが示された。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Shape-Dependent Multi-Weight Magnetic Artificial Synapses for
Neuromorphic Computing [4.567086462167893]
神経形コンピューティングにおいて、人工シナプスは、脳に類似したニューロンからの入力に基づいて設定される多重コンダクタンス状態を提供する。
本稿では,磁気トンネル接合と磁区壁を用いた磁気材料を用いた人工シナプスの測定を行った。
論文 参考訳(メタデータ) (2021-11-22T20:27:14Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Controllable reset behavior in domain wall-magnetic tunnel junction
artificial neurons for task-adaptable computation [1.4505273244528207]
ドメイン壁-磁気トンネル接合(DW-MTJ)デバイスは、生物学的ニューロンの挙動を本質的に捉えることができることが示されている。
そこで本研究では,DW-MTJ人工ニューロンにおいて,3つの代替メカニズムを用いてエジラックス動作を実装可能であることを示す。
論文 参考訳(メタデータ) (2021-01-08T16:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。