BloodCell-Net: A lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body
- URL: http://arxiv.org/abs/2405.14875v1
- Date: Mon, 1 Apr 2024 20:38:58 GMT
- Title: BloodCell-Net: A lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body
- Authors: Sohag Kumar Mondal, Md. Simul Hasan Talukder, Mohammad Aljaidi, Rejwan Bin Sulaiman, Md Mohiuddin Sarker Tushar, Amjad A Alsuwaylimi,
- Abstract summary: Blood cell classification and counting is vital for the diagnosis of various blood-related diseases.
We have proposed a DL based automated system for blood cell classification and counting from microscopic blood smear images.
We classify total of nine types of blood cells, including Erythrocyte, Erythroblast, Neutrophil, Basophil, Eosinophil, Lymphocyte, Monocyte, Immature Granulocytes, and Platelet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blood cell classification and counting are vital for the diagnosis of various blood-related diseases, such as anemia, leukemia, and thrombocytopenia. The manual process of blood cell classification and counting is time-consuming, prone to errors, and labor-intensive. Therefore, we have proposed a DL based automated system for blood cell classification and counting from microscopic blood smear images. We classify total of nine types of blood cells, including Erythrocyte, Erythroblast, Neutrophil, Basophil, Eosinophil, Lymphocyte, Monocyte, Immature Granulocytes, and Platelet. Several preprocessing steps like image resizing, rescaling, contrast enhancement and augmentation are utilized. To segment the blood cells from the entire microscopic images, we employed the U-Net model. This segmentation technique aids in extracting the region of interest (ROI) by removing complex and noisy background elements. Both pixel-level metrics such as accuracy, precision, and sensitivity, and object-level evaluation metrics like Intersection over Union (IOU) and Dice coefficient are considered to comprehensively evaluate the performance of the U-Net model. The segmentation model achieved impressive performance metrics, including 98.23% accuracy, 98.40% precision, 98.25% sensitivity, 95.97% Intersection over Union (IOU), and 97.92% Dice coefficient. Subsequently, a watershed algorithm is applied to the segmented images to separate overlapped blood cells and extract individual cells. We have proposed a BloodCell-Net approach incorporated with custom light weight convolutional neural network (LWCNN) for classifying individual blood cells into nine types. Comprehensive evaluation of the classifier's performance is conducted using metrics including accuracy, precision, recall, and F1 score. The classifier achieved an average accuracy of 97.10%, precision of 97.19%, recall of 97.01%, and F1 score of 97.10%.
Related papers
- Automatic Classification of White Blood Cell Images using Convolutional Neural Network [0.0]
Human immune system contains white blood cells (WBC) that are good indicator of many diseases like bacterial infections, AIDS, cancer, spleen, etc.
Traditionally in laboratories, pathologists and hematologists analyze these blood cells through microscope and then classify them manually.
In this paper, first we have used different CNN pre-train models such as ResNet-50, InceptionV3, VGG16 and MobileNetV2 to automatically classify the white blood cells.
Inspired by these architectures, a framework has been proposed to automatically categorize the four kinds of white blood cells with increased accuracy.
arXiv Detail & Related papers (2024-09-19T16:39:46Z) - Deep Generative Classification of Blood Cell Morphology [7.611536156732807]
We introduce CytoDiffusion, a diffusion-based classifier that effectively models blood cell morphology.
Our approach outperforms state-of-the-art discriminative models in anomaly detection.
We enhance model explainability through the generation of directly interpretable counterfactual heatmaps.
arXiv Detail & Related papers (2024-08-16T19:17:02Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Classification of All Blood Cell Images using ML and DL Models [7.737213476933511]
Human blood primarily comprises plasma, red blood cells, white blood cells, and platelets.
It plays a vital role in transporting nutrients to different organs, where it stores essential health-related data about the human body.
Blood analysis can help physicians assess an individual's physiological condition.
arXiv Detail & Related papers (2023-08-11T07:57:12Z) - Corneal endothelium assessment in specular microscopy images with Fuchs'
dystrophy via deep regression of signed distance maps [48.498376125522114]
This paper proposes a UNet-based segmentation approach that requires minimal post-processing.
It achieves reliable CE morphometric assessment and guttae identification across all degrees of Fuchs' dystrophy.
arXiv Detail & Related papers (2022-10-13T15:34:20Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
Medulloblastoma is the most common malignant brain cancer among children.
CNN has shown promising results for MB subtype classification.
We study the impact of tile size and input strategy.
arXiv Detail & Related papers (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - White blood cell classification [3.386401892906348]
We propose an adaptive threshold segmentation method to deal with blood smears images with non-uniform color and uneven illumination.
A feature selection algorithm based on classification and regression trees (CART) is designed.
The proposed methodology achieves 99.76% classification accuracy, which well demonstrates its effectiveness.
arXiv Detail & Related papers (2020-08-17T09:48:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.