Automatic Classification of White Blood Cell Images using Convolutional Neural Network
- URL: http://arxiv.org/abs/2409.13442v4
- Date: Mon, 14 Oct 2024 11:38:45 GMT
- Title: Automatic Classification of White Blood Cell Images using Convolutional Neural Network
- Authors: Rabia Asghar, Arslan Shaukat, Usman Akram, Rimsha Tariq,
- Abstract summary: Human immune system contains white blood cells (WBC) that are good indicator of many diseases like bacterial infections, AIDS, cancer, spleen, etc.
Traditionally in laboratories, pathologists and hematologists analyze these blood cells through microscope and then classify them manually.
In this paper, first we have used different CNN pre-train models such as ResNet-50, InceptionV3, VGG16 and MobileNetV2 to automatically classify the white blood cells.
Inspired by these architectures, a framework has been proposed to automatically categorize the four kinds of white blood cells with increased accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human immune system contains white blood cells (WBC) that are good indicator of many diseases like bacterial infections, AIDS, cancer, spleen, etc. White blood cells have been sub classified into four types: monocytes, lymphocytes, eosinophils and neutrophils on the basis of their nucleus, shape and cytoplasm. Traditionally in laboratories, pathologists and hematologists analyze these blood cells through microscope and then classify them manually. This manual process takes more time and increases the chance of human error. Hence, there is a need to automate this process. In this paper, first we have used different CNN pre-train models such as ResNet-50, InceptionV3, VGG16 and MobileNetV2 to automatically classify the white blood cells. These pre-train models are applied on Kaggle dataset of microscopic images. Although we achieved reasonable accuracy ranging between 92 to 95%, still there is need to enhance the performance. Hence, inspired by these architectures, a framework has been proposed to automatically categorize the four kinds of white blood cells with increased accuracy. The aim is to develop a convolution neural network (CNN) based classification system with decent generalization ability. The proposed CNN model has been tested on white blood cells images from Kaggle and LISC datasets. Accuracy achieved is 99.57% and 98.67% for both datasets respectively. Our proposed convolutional neural network-based model provides competitive performance as compared to previous results reported in literature.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - BloodCell-Net: A lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body [0.0]
Blood cell classification and counting is vital for the diagnosis of various blood-related diseases.
We have proposed a DL based automated system for blood cell classification and counting from microscopic blood smear images.
We classify total of nine types of blood cells, including Erythrocyte, Erythroblast, Neutrophil, Basophil, Eosinophil, Lymphocyte, Monocyte, Immature Granulocytes, and Platelet.
arXiv Detail & Related papers (2024-04-01T20:38:58Z) - Pathologist-Like Explanations Unveiled: an Explainable Deep Learning
System for White Blood Cell Classification [1.516937009186805]
HemaX is an explainable deep neural network-based model that produces pathologist-like explanations using five attributes.
HemaX achieves impressive results, with an average classification accuracy of 81.08% and a Jaccard index of 89.16% for cell localization.
arXiv Detail & Related papers (2023-10-20T04:59:20Z) - Classification of All Blood Cell Images using ML and DL Models [7.737213476933511]
Human blood primarily comprises plasma, red blood cells, white blood cells, and platelets.
It plays a vital role in transporting nutrients to different organs, where it stores essential health-related data about the human body.
Blood analysis can help physicians assess an individual's physiological condition.
arXiv Detail & Related papers (2023-08-11T07:57:12Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Red Blood Cell Segmentation with Overlapping Cell Separation and
Classification on Imbalanced Dataset [1.7219362335740878]
Overlapping cells can cause incorrect predicted results that have to separate into multiple single RBCs before classifying.
To classify multiple classes with deep learning, imbalance problems are common in medical imaging because normal samples are always higher than rare disease samples.
This paper presents a new method to segment and classify red blood cells from blood smear images, specifically to tackle cell overlapping and data imbalance problems.
arXiv Detail & Related papers (2020-12-02T16:49:51Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.