Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images
- URL: http://arxiv.org/abs/2404.05584v2
- Date: Wed, 31 Jul 2024 11:54:48 GMT
- Title: Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images
- Authors: Michael Deutges, Ario Sadafi, Nassir Navab, Carsten Marr,
- Abstract summary: We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
- Score: 40.347953893940044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnosis of hematological malignancies depends on accurate identification of white blood cells in peripheral blood smears. Deep learning techniques are emerging as a viable solution to scale and optimize this process by automatic cell classification. However, these techniques face several challenges such as limited generalizability, sensitivity to domain shifts, and lack of explainability. Here, we introduce a novel approach for white blood cell classification based on neural cellular automata (NCA). We test our approach on three datasets of white blood cell images and show that we achieve competitive performance compared to conventional methods. Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts. Furthermore, the architecture is inherently explainable, providing insights into the decision process for each classification, which helps to understand and validate model predictions. Our results demonstrate that NCA can be used for image classification, and that they address key challenges of conventional methods, indicating a high potential for applicability in clinical practice.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Towards Interpretable Classification of Leukocytes based on Deep
Learning [0.7227323884094953]
This work investigates the calibration of confidence estimation for the automated classification of leukocytes.
In addition, different visual explanation approaches are compared, which should bring machine decision making closer to professional healthcare applications.
arXiv Detail & Related papers (2023-11-24T13:48:37Z) - Classification of White Blood Cells Using Machine and Deep Learning
Models: A Systematic Review [8.452349885923507]
Machine learning (ML) and deep learning (DL) models have been employed to significantly improve analyses of medical imagery.
Model predictions and classifications assist diagnoses of various cancers and tumors.
This review presents an in-depth analysis of modern techniques applied within the domain of medical image analysis for white blood cell classification.
arXiv Detail & Related papers (2023-08-11T06:32:25Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Classification of White Blood Cell Leukemia with Low Number of
Interpretable and Explainable Features [0.0]
White Blood Cell (WBC) Leukaemia is detected through image-based classification.
Convolutional Neural Networks are used to learn the features needed to classify images of cells a malignant or healthy.
This type of model requires learning a large number of parameters and is difficult to interpret and explain.
We present an XAI model which uses only 24 explainable and interpretable features and is highly competitive to other approaches by outperforming them by about 4.38%.
arXiv Detail & Related papers (2022-01-28T00:08:56Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Analysis of Vision-based Abnormal Red Blood Cell Classification [1.6050172226234583]
Identification of abnormalities in red blood cells (RBC) is key to diagnosing a range of medical conditions from anaemia to liver disease.
This paper presents an automated process utilising the advantages of machine learning to increase capacity and standardisation of cell abnormality detection.
arXiv Detail & Related papers (2021-06-01T10:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.