論文の概要: Show, Describe and Conclude: On Exploiting the Structure Information of
Chest X-Ray Reports
- arxiv url: http://arxiv.org/abs/2004.12274v2
- Date: Thu, 23 Jul 2020 17:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 13:09:25.981052
- Title: Show, Describe and Conclude: On Exploiting the Structure Information of
Chest X-Ray Reports
- Title(参考訳): 胸部X線レポートの構造情報の公開, 説明, 開示について
- Authors: Baoyu Jing, Zeya Wang, Eric Xing
- Abstract要約: 胸部X線像(CXR)は臨床検診や診断に一般的に用いられる。
レポートのセクションと内部の複雑な構造は、自動レポート生成に大きな課題をもたらします。
本稿では,CXRイメージングレポートを生成するために,レポートセクション間の構造情報を利用する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.6070625920019825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest X-Ray (CXR) images are commonly used for clinical screening and
diagnosis. Automatically writing reports for these images can considerably
lighten the workload of radiologists for summarizing descriptive findings and
conclusive impressions. The complex structures between and within sections of
the reports pose a great challenge to the automatic report generation.
Specifically, the section Impression is a diagnostic summarization over the
section Findings; and the appearance of normality dominates each section over
that of abnormality. Existing studies rarely explore and consider this
fundamental structure information. In this work, we propose a novel framework
that exploits the structure information between and within report sections for
generating CXR imaging reports. First, we propose a two-stage strategy that
explicitly models the relationship between Findings and Impression. Second, we
design a novel cooperative multi-agent system that implicitly captures the
imbalanced distribution between abnormality and normality. Experiments on two
CXR report datasets show that our method achieves state-of-the-art performance
in terms of various evaluation metrics. Our results expose that the proposed
approach is able to generate high-quality medical reports through integrating
the structure information.
- Abstract(参考訳): 胸部X線像(CXR)は臨床検診や診断に一般的に用いられる。
これらの画像に対するレポートの自動書き込みは、記述的所見と決定的な印象を要約するために、放射線科医の作業負荷を大幅に軽減することができる。
レポートのセクション内とセクション間の複雑な構造は、自動レポート生成にとって大きな課題となる。
具体的には、印象部は、発見部に対する診断の要約であり、正常性の出現は、異常部のそれぞれの部分を支配する。
既存の研究は、この基本的な構造情報を探索し考慮することが滅多にない。
そこで本研究では,CXRイメージングレポートを生成するために,レポートセクション間の構造情報を利用する新しいフレームワークを提案する。
まず,発見と印象の関係を明示的にモデル化する二段階戦略を提案する。
第2に,異常と正規性の間の不均衡分布を暗黙的にキャプチャする新しい協調型マルチエージェントシステムを設計する。
CXRレポートデータセットの2つの実験結果から,本手法が各種評価指標を用いて最先端の性能を達成することを示す。
その結果,提案手法は構造情報の統合により,高品質な医療報告を作成できることがわかった。
関連論文リスト
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - A Novel Corpus of Annotated Medical Imaging Reports and Information Extraction Results Using BERT-based Language Models [4.023338734079828]
医療画像は多くの健康状態の診断、監視、治療に重要である。
放射線学者は、これらの複雑で非構造的なイメージを解釈し、ほとんど非構造的のままの物語報告を通じてその評価を明確にする。
この非構造化の物語は、振り返り分析や臨床決定支援のような二次的な応用を促進するために、構造化された意味表現に変換されなければならない。
論文 参考訳(メタデータ) (2024-03-27T19:43:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Controllable Chest X-Ray Report Generation from Longitudinal
Representations [13.151444796296868]
レポートをスピードアップする1つの戦略は、自動レポートシステムを統合することである。
自動放射線診断への従来のアプローチは、入力として事前の研究を提供していないのが一般的である。
筆者らは,(1) 縦断学習 -- マルチモーダルレポート生成モデルに提供可能な関節長手表現に,現在のスキャン情報と先行スキャン情報を整合し,活用する手法を提案する。(2) 文解剖学的ドロップアウト -- レポート生成モデルを用いて,入力として与えられた解剖学的領域のサブセットに対応する元のレポートからのみ文を予測する訓練戦略。
論文 参考訳(メタデータ) (2023-10-09T17:22:58Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on
Chest X-rays [6.686095511538683]
本研究は放射線画像の異常所見の報告に焦点を当てる。
本稿では, レポートから異常な発見を識別し, 教師なしクラスタリングと最小限のルールで分類する手法を提案する。
本手法は, 異常所見を回収し, 臨床正当性およびテキスト生成量の両方で既存の世代モデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-06T04:18:18Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。