High Rank Path Development: an approach of learning the filtration of stochastic processes
- URL: http://arxiv.org/abs/2405.14913v1
- Date: Thu, 23 May 2024 13:20:47 GMT
- Title: High Rank Path Development: an approach of learning the filtration of stochastic processes
- Authors: Jiajie Tao, Hao Ni, Chong Liu,
- Abstract summary: We introduce a novel metric called High Rank PCF Distance (HRPCFD) for extended weak convergence.
We then show that such HRPCFD admits many favourable analytic properties which allows us to design an efficient algorithm for training HRPCFD from data and construct the HRPCF-GAN.
Our numerical experiments on both hypothesis testing and generative modelling validate the out-performance of our approach compared with several state-of-the-art methods.
- Score: 6.245824251614165
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Since the weak convergence for stochastic processes does not account for the growth of information over time which is represented by the underlying filtration, a slightly erroneous stochastic model in weak topology may cause huge loss in multi-periods decision making problems. To address such discontinuities Aldous introduced the extended weak convergence, which can fully characterise all essential properties, including the filtration, of stochastic processes; however was considered to be hard to find efficient numerical implementations. In this paper, we introduce a novel metric called High Rank PCF Distance (HRPCFD) for extended weak convergence based on the high rank path development method from rough path theory, which also defines the characteristic function for measure-valued processes. We then show that such HRPCFD admits many favourable analytic properties which allows us to design an efficient algorithm for training HRPCFD from data and construct the HRPCF-GAN by using HRPCFD as the discriminator for conditional time series generation. Our numerical experiments on both hypothesis testing and generative modelling validate the out-performance of our approach compared with several state-of-the-art methods, highlighting its potential in broad applications of synthetic time series generation and in addressing classic financial and economic challenges, such as optimal stopping or utility maximisation problems.
Related papers
- Efficient Training of Neural Stochastic Differential Equations by Matching Finite Dimensional Distributions [3.889230974713832]
We develop a novel scoring rule for comparing continuous Markov processes.
This scoring rule allows us to bypass the computational overhead associated with signature kernels.
We demonstrate that FDM achieves superior performance, consistently outperforming existing methods in terms of both computational efficiency and generative quality.
arXiv Detail & Related papers (2024-10-04T23:26:38Z) - Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent
Flow Simulation [29.806100463356906]
We analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option.
We investigate accuracy, posterior sampling, spectral behavior, and temporal stability, while requiring that methods generalize to flow parameters beyond the training regime.
We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
arXiv Detail & Related papers (2023-09-04T18:01:42Z) - PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers [40.097474800631]
Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering.
Deep neural network based surrogates have gained increased interest.
arXiv Detail & Related papers (2023-08-10T17:53:05Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Learning from time-dependent streaming data with online stochastic
algorithms [7.283533791778357]
This paper addresses optimization in a streaming setting with time-dependent and biased estimates.
We analyze several first-order methods, including Gradient Descent (SGD), mini-batch SGD, and time-varying mini-batch SGD, along with their Polyak-Ruppert averages.
arXiv Detail & Related papers (2022-05-25T07:53:51Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.