Evidence of the quantum-optical nature of high-harmonic generation
- URL: http://arxiv.org/abs/2405.15022v2
- Date: Thu, 6 Jun 2024 14:27:30 GMT
- Title: Evidence of the quantum-optical nature of high-harmonic generation
- Authors: David Theidel, Viviane Cotte, René Sondenheimer, Viktoriia Shiriaeva, Marie Froidevaux, Vladislav Severin, Philip Mosel, Adam Merdji-Larue, Sven Fröhlich, Kim-Alessandro Weber, Uwe Morgner, Milutin Kovacev, Jens Biegert, Hamed Merdji,
- Abstract summary: We show that high-harmonic generation can generate non-classical states of light before the decoherence of the system.
This could address challenges in quantum technology such as scalability, decoherence or the generation of massively entangled states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-harmonic generation is a light up-conversion process occurring in a strong laser field, leading to coherent bursts of extreme ultrashort broadband radiation [1]. As a new perspective, we propose that ultrafast strong-field electronic or photonic processes such as high-harmonic generation can potentially generate non-classical states of light well before the decoherence of the system occurs [2, 3]. This could address fundamental challenges in quantum technology such as scalability, decoherence or the generation of massively entangled states [4]. Here, we report experimental evidence of the non-classical nature of the harmonic emission in several semiconductors excited by a femtosecond infrared laser. By investigating single- and double beam intensity cross-correlation [5], we measure characteristic, non-classical features in the single photon statistics. We observe two-mode squeezing in the generated harmonic radiation, which depends on the laser intensity that governs the transition from Super-Poissonian to Poissonian photon statistics. The measured violation of the Cauchy-Schwarz inequality realizes a direct test of multipartite entanglement in high-harmonic generation [6]. This result is supported by the theory of multimodal detection and the Hamiltonian from which the effective squeezing modes of the harmonics can be derived [7, 8]. With this work, we show experimentally that high-harmonic generation is a new quantum bosonic platform that intrinsically produces non-classical states of light with unique features such as multipartite broadband entanglement or multimode squeezing. The source operates at room temperature using standard semiconductors and a standard commercial fiber laser, opening new routes for the quantum industry, such as optical quantum computing, communication and imaging.
Related papers
- Observation of a Multimode Displaced Squeezed State in High-Harmonic Generation [0.0]
We show that semiconductor high harmonic generation generates multimode squeezed states of light.
The source operates at room temperature with compact lasers, and it could become a useful resource for future applications in quantum technologies.
arXiv Detail & Related papers (2024-11-04T17:37:40Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Generation of massively entangled bright states of light during harmonic
generation in resonant media [0.0]
We show how nonlinear optical response of matter can be controlled to generate dramatic deviations from standard picture.
In particular, non-trivial quantum states of harmonics are generated as soon as one of the harmonics induces a transition between different laser-dressed states of the material system.
Our analysis opens remarkable opportunities at the interface of attosecond physics and quantum optics, with implications for quantum information science.
arXiv Detail & Related papers (2024-01-05T14:02:06Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Nonclassical light generation and control from laser-driven
semiconductor intraband excitations [0.0]
We investigate the generation of higher-order harmonics from a quantum optics perspective.
We find intricate but sufficiently mild modifications of the fundamental mode and coherent displacements.
Similar to high-harmonic generation in atoms, all radiation field modes are entangled, allowing for potential novel protocols for quantum information processing.
arXiv Detail & Related papers (2022-11-11T12:59:15Z) - High photon number entangled states and coherent state superposition
from the extreme-ultraviolet to the far infrared [0.0]
We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions.
It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states.
These states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light.
arXiv Detail & Related papers (2021-07-27T15:40:23Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.