Reinforcement Learning for Infinite-Horizon Average-Reward Linear MDPs via Approximation by Discounted-Reward MDPs
- URL: http://arxiv.org/abs/2405.15050v2
- Date: Tue, 22 Oct 2024 23:57:34 GMT
- Title: Reinforcement Learning for Infinite-Horizon Average-Reward Linear MDPs via Approximation by Discounted-Reward MDPs
- Authors: Kihyuk Hong, Woojin Chae, Yufan Zhang, Dabeen Lee, Ambuj Tewari,
- Abstract summary: We study the infinite-horizon average-reward reinforcement learning with linear MDPs.
In this paper, we propose that the regret bound of $widetildeO(sqrtT)$ achieves an algorithm that is computationally efficient.
- Score: 16.49229317664822
- License:
- Abstract: We study the infinite-horizon average-reward reinforcement learning with linear MDPs. Previous approaches either suffer from computational inefficiency or require strong assumptions on dynamics, such as ergodicity, for achieving a regret bound of $\widetilde{O}(\sqrt{T})$. In this paper, we propose an algorithm that achieves the regret bound of $\widetilde{O}(\sqrt{T})$ and is computationally efficient in the sense that the time complexity is polynomial in problem parameters. Our algorithm runs an optimistic value iteration on a discounted-reward MDP that approximates the average-reward setting. With an appropriately tuned discounting factor $\gamma$, the algorithm attains the desired $\widetilde{O}(\sqrt{T})$ regret. The challenge in our approximation approach is to get a regret bound with a sharp dependency on the effective horizon $1 / (1 - \gamma)$. We address this challenge by clipping the value function obtained at each value iteration step to limit the span of the value function.
Related papers
- Learning Infinite-Horizon Average-Reward Linear Mixture MDPs of Bounded Span [16.49229317664822]
This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear mixture Markov decision processes (MDPs)
Our algorithm for linear mixture MDPs achieves a nearly minimax optimal regret upper bound of $widetildemathcalO(dsqrtmathrmsp(v*)T)$ over $T$ time steps.
arXiv Detail & Related papers (2024-10-19T05:45:50Z) - Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation [1.8416014644193066]
We propose an algorithm for learning linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition.
Our algorithm for linear MDPs achieves the best-known regret upper bound of $widetildemathcalO(d3/2mathrmsp(v*)sqrtT)$ over $T$ time steps.
For linear mixture MDPs, our algorithm attains a regret bound of $widetildemathcalO(dcdotmathrm
arXiv Detail & Related papers (2024-09-16T23:13:42Z) - Infinite-Horizon Reinforcement Learning with Multinomial Logistic Function Approximation [3.2703356989962518]
We study model-based reinforcement learning with non-linear function approximation.
We develop a provably efficient discounted value iteration-based algorithm that works for both infinite-horizon average-reward and discounted-reward settings.
arXiv Detail & Related papers (2024-06-19T15:29:14Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
We propose a provably efficient reinforcement learning algorithm (both computationally and statistically) with general value function approximations.
Our algorithm achieves reasonable regret bounds when applied to both the linear setting and the sparse high-dimensional linear setting.
arXiv Detail & Related papers (2023-02-22T20:21:25Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Learning Infinite-Horizon Average-Reward Markov Decision Processes with
Constraints [39.715977181666766]
We study regret for infinite-horizon average-reward Markov Decision Processes (MDPs) under cost constraints.
Our algorithm ensures $widetildeO(sqrtT)$ regret and constant constraint violation for ergodic MDPs.
These are the first set of provable algorithms for weakly communicating MDPs with cost constraints.
arXiv Detail & Related papers (2022-01-31T23:52:34Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function
Approximation [92.3161051419884]
We study the reinforcement learning for finite-horizon episodic Markov decision processes with adversarial reward and full information feedback.
We show that it can achieve $tildeO(dHsqrtT)$ regret, where $H$ is the length of the episode.
We also prove a matching lower bound of $tildeOmega(dHsqrtT)$ up to logarithmic factors.
arXiv Detail & Related papers (2021-02-17T18:54:08Z) - Learning Infinite-horizon Average-reward MDPs with Linear Function
Approximation [44.374427255708135]
We develop new algorithms for learning Markov Decision Processes in an infinite-horizon average-reward setting with linear function approximation.
Using the optimism principle and assuming that the MDP has a linear structure, we first propose a computationally inefficient algorithm with optimal $widetildeO(sqrtT)$ regret.
Next, taking inspiration from adversarial linear bandits, we develop yet another efficient algorithm with $widetildeO(sqrtT)$ regret.
arXiv Detail & Related papers (2020-07-23T08:23:44Z) - Provably Efficient Reinforcement Learning for Discounted MDPs with
Feature Mapping [99.59319332864129]
In this paper, we study reinforcement learning for discounted Decision (MDP)
We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrtT/ (1-gamma)2)$ regret.
Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $ (1-gamma)-0.5$ factor.
arXiv Detail & Related papers (2020-06-23T17:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.