Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2405.15054v1
- Date: Thu, 23 May 2024 21:03:33 GMT
- Title: Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning
- Authors: Matteo Bettini, Ryan Kortvelesy, Amanda Prorok,
- Abstract summary: We introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric.
We show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in Multi-Agent Reinforcement Learning.
- Score: 8.905920197601173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of behavioral diversity in Multi-Agent Reinforcement Learning (MARL) is a nascent yet promising field. In this context, the present work deals with the question of how to control the diversity of a multi-agent system. With no existing approaches to control diversity to a set value, current solutions focus on blindly promoting it via intrinsic rewards or additional loss functions, effectively changing the learning objective and lacking a principled measure for it. To address this, we introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL. Multimedia results are available on the paper's website: https://sites.google.com/view/dico-marl.
Related papers
- System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning [8.280943341629161]
We introduce System Neural Diversity (SND): a measure of behavioral heterogeneity in multi-agent systems.
We show how SND allows us to measure latent resilience skills acquired by the agents, while other proxies, such as task performance (reward), fail.
We demonstrate how this paradigm can be used to bootstrap the exploration phase, finding optimal policies faster.
arXiv Detail & Related papers (2023-05-03T13:58:13Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Revisiting Some Common Practices in Cooperative Multi-Agent
Reinforcement Learning [11.91425153754564]
We show that in environments with a highly multi-modal reward landscape, value decomposition, and parameter sharing can be problematic and lead to undesired outcomes.
In contrast, policy gradient (PG) methods with individual policies provably converge to an optimal solution in these cases.
We present practical suggestions on implementing multi-agent PG algorithms for either high rewards or diverse emergent behaviors.
arXiv Detail & Related papers (2022-06-15T13:03:05Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
We quantify the agent's behavior difference and build its relationship with the policy performance via bf Role Diversity
We find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity.
The decomposed factors can significantly impact policy optimization on three popular directions.
arXiv Detail & Related papers (2022-06-01T04:58:52Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
Deep multi-agent reinforcement learning has shown the promise to solve complex cooperative tasks.
In this paper, we aim to introduce diversity in both optimization and representation of shared multi-agent reinforcement learning.
Our method achieves state-of-the-art performance on Google Research Football and super hard StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-06-04T00:55:03Z) - Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent
Reinforcement Learning [10.64928897082273]
Experimental results demonstrate that mSAC significantly outperforms policy-based approach COMA.
In addition, mSAC achieves pretty good results on large action space tasks, such as 2c_vs_64zg and MMM2.
arXiv Detail & Related papers (2021-04-14T07:02:40Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.