Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
- URL: http://arxiv.org/abs/2405.15059v2
- Date: Thu, 26 Sep 2024 15:53:10 GMT
- Title: Message-Passing Monte Carlo: Generating low-discrepancy point sets via Graph Neural Networks
- Authors: T. Konstantin Rusch, Nathan Kirk, Michael M. Bronstein, Christiane Lemieux, Daniela Rus,
- Abstract summary: We present the first machine learning approach to generate low-discrepancy point sets named Message-Passing Monte Carlo points.
MPMC points are empirically shown to be either optimal or near-optimal with respect to the discrepancy for low dimension and small number of points.
- Score: 64.39488944424095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrepancy is a well-known measure for the irregularity of the distribution of a point set. Point sets with small discrepancy are called low-discrepancy and are known to efficiently fill the space in a uniform manner. Low-discrepancy points play a central role in many problems in science and engineering, including numerical integration, computer vision, machine perception, computer graphics, machine learning, and simulation. In this work, we present the first machine learning approach to generate a new class of low-discrepancy point sets named Message-Passing Monte Carlo (MPMC) points. Motivated by the geometric nature of generating low-discrepancy point sets, we leverage tools from Geometric Deep Learning and base our model on Graph Neural Networks. We further provide an extension of our framework to higher dimensions, which flexibly allows the generation of custom-made points that emphasize the uniformity in specific dimensions that are primarily important for the particular problem at hand. Finally, we demonstrate that our proposed model achieves state-of-the-art performance superior to previous methods by a significant margin. In fact, MPMC points are empirically shown to be either optimal or near-optimal with respect to the discrepancy for low dimension and small number of points, i.e., for which the optimal discrepancy can be determined. Code for generating MPMC points can be found at https://github.com/tk-rusch/MPMC.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - MeshFeat: Multi-Resolution Features for Neural Fields on Meshes [38.93284476165776]
Parametric feature grid encodings have gained significant attention as an encoding approach for neural fields.
We propose MeshFeat, a parametric feature encoding tailored to meshes, for which we adapt the idea of multi-resolution feature grids from Euclidean space.
We show a significant speed-up compared to previous representations while maintaining comparable reconstruction quality for texture reconstruction and BRDF representation.
arXiv Detail & Related papers (2024-07-18T15:29:48Z) - Point Deformable Network with Enhanced Normal Embedding for Point Cloud
Analysis [59.12922158979068]
Recently-based methods have shown strong performance in point cloud analysis.
Simple architectures are able to learn geometric features in local point groups yet fail to model long-range dependencies directly.
We propose Point Deformable Network (PDNet) to capture long-range relations with strong representation ability.
arXiv Detail & Related papers (2023-12-20T14:52:07Z) - Learning topological operations on meshes with application to block
decomposition of polygons [0.0]
We present a learning based framework for mesh quality improvement on unstructured and quadrilateral meshes.
Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no priors.
arXiv Detail & Related papers (2023-09-12T18:00:27Z) - The Decimation Scheme for Symmetric Matrix Factorization [0.0]
Matrix factorization is an inference problem that has acquired importance due to its vast range of applications.
We study this extensive rank problem, extending the alternative 'decimation' procedure that we recently introduced.
We introduce a simple algorithm based on a ground state search that implements decimation and performs matrix factorization.
arXiv Detail & Related papers (2023-07-31T10:53:45Z) - GraphFit: Learning Multi-scale Graph-Convolutional Representation for
Point Cloud Normal Estimation [31.40738037512243]
We propose a precise and efficient normal estimation method for unstructured 3D point clouds.
We learn graph convolutional feature representation for normal estimation, which emphasizes more local neighborhood geometry.
Our method outperforms competitors with the state-of-the-art accuracy on various benchmark datasets.
arXiv Detail & Related papers (2022-07-23T10:29:26Z) - Rethinking Network Design and Local Geometry in Point Cloud: A Simple
Residual MLP Framework [55.40001810884942]
We introduce a pure residual network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively.
On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy.
Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark.
arXiv Detail & Related papers (2022-02-15T01:39:07Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point
Cloud Registration [1.8876415010297891]
We propose a novel method called CPD with Local Surface Geometry (LSG-CPD) for rigid point cloud registration.
Our method adaptively adds different levels of point-to-plane penalization on top of the point-to-point penalization based on the flatness of the local surface.
It is significantly faster than modern implementations of CPD.
arXiv Detail & Related papers (2021-03-28T03:46:41Z) - PointGMM: a Neural GMM Network for Point Clouds [83.9404865744028]
Point clouds are popular representation for 3D shapes, but encode a particular sampling without accounting for shape priors or non-local information.
We present PointGMM, a neural network that learns to generate hGMMs which are characteristic of the shape class.
We show that as a generative model, PointGMM learns a meaningful latent space which enables generating consistents between existing shapes.
arXiv Detail & Related papers (2020-03-30T10:34:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.