論文の概要: Conformal Classification with Equalized Coverage for Adaptively Selected Groups
- arxiv url: http://arxiv.org/abs/2405.15106v2
- Date: Wed, 30 Oct 2024 05:52:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:57.980702
- Title: Conformal Classification with Equalized Coverage for Adaptively Selected Groups
- Title(参考訳): 適応選択群に対する等化被覆を用いた等式分類
- Authors: Yanfei Zhou, Matteo Sesia,
- Abstract要約: 本稿では、適応的に選択された特徴に対して有効なカバレッジ条件付き予測セットを生成することにより、分類の不確かさを評価するための共形推論手法を提案する。
シミュレーションおよび実データに対して,本手法の有効性と有効性を示す。
- 参考スコア(独自算出の注目度): 9.016173836219524
- License:
- Abstract: This paper introduces a conformal inference method to evaluate uncertainty in classification by generating prediction sets with valid coverage conditional on adaptively chosen features. These features are carefully selected to reflect potential model limitations or biases. This can be useful to find a practical compromise between efficiency -- by providing informative predictions -- and algorithmic fairness -- by ensuring equalized coverage for the most sensitive groups. We demonstrate the validity and effectiveness of this method on simulated and real data sets.
- Abstract(参考訳): 本稿では、適応的に選択された特徴に対して有効なカバレッジ条件付き予測セットを生成することにより、分類の不確かさを評価するための共形推論手法を提案する。
これらの機能は、潜在的なモデル制限やバイアスを反映するように慎重に選択される。
これは、最も敏感なグループに対する平等なカバレッジを確保することで、効率性 -- 情報的予測 -- とアルゴリズム的公正性 -- の実践的な妥協を見つけるのに役立つ。
シミュレーションおよび実データに対して,本手法の有効性と有効性を示す。
関連論文リスト
- Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
本稿では,複数の候補モデルから予測セットを作成するために使用されるモデルを選択する適応型共形予測フレームワークを提案する。
提案アルゴリズムは, 有効なカバレッジを維持しつつ, 全区間にわたる強い適応的後悔を達成できることが証明された。
論文 参考訳(メタデータ) (2024-11-06T05:57:28Z) - Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
コンフォーマル予測は、有効なカバレッジ保証を備えた予測セットを構築するための強力なフレームワークである。
本稿では,共形予測器の性能向上のために,複数のスコア関数を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-14T14:58:03Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
本稿では,分類ヘッドを損なうために,UnderlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN)損失を原則として提案する。
論文 参考訳(メタデータ) (2022-10-12T23:39:28Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
本稿では、決定しきい値とは無関係に、異なるグループ間で公平な性能を強制する、しきい値不変公平性の概念を紹介する。
実験結果から,提案手法は,公平性を実現するために設計された機械学習モデルの閾値感度を緩和するために有効であることが示された。
論文 参考訳(メタデータ) (2020-06-18T16:49:46Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Classification with Valid and Adaptive Coverage [11.680355561258427]
コンフォーマル推論、クロスバリデーション+、およびJackknife+は、事実上あらゆる機械学習アルゴリズムと組み合わせることができるホールドアウトメソッドである。
我々はこれらの手法の特殊バージョンを分類的・非順序対応ラベルとして開発する。
論文 参考訳(メタデータ) (2020-06-03T21:42:04Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。