GS-Hider: Hiding Messages into 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2405.15118v2
- Date: Mon, 07 Oct 2024 12:28:43 GMT
- Title: GS-Hider: Hiding Messages into 3D Gaussian Splatting
- Authors: Xuanyu Zhang, Jiarui Meng, Runyi Li, Zhipei Xu, Yongbing Zhang, Jian Zhang,
- Abstract summary: 3D Gaussian Splatting (3DGS) has already become the emerging research focus in the fields of 3D scene reconstruction and novel view synthesis.
It is crucial to protect the copyright, integrity, and privacy of such 3D assets.
We propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed 3D scenes and images into original GS point clouds.
- Score: 18.16759704305008
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has already become the emerging research focus in the fields of 3D scene reconstruction and novel view synthesis. Given that training a 3DGS requires a significant amount of time and computational cost, it is crucial to protect the copyright, integrity, and privacy of such 3D assets. Steganography, as a crucial technique for encrypted transmission and copyright protection, has been extensively studied. However, it still lacks profound exploration targeted at 3DGS. Unlike its predecessor NeRF, 3DGS possesses two distinct features: 1) explicit 3D representation; and 2) real-time rendering speeds. These characteristics result in the 3DGS point cloud files being public and transparent, with each Gaussian point having a clear physical significance. Therefore, ensuring the security and fidelity of the original 3D scene while embedding information into the 3DGS point cloud files is an extremely challenging task. To solve the above-mentioned issue, we first propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed 3D scenes and images into original GS point clouds in an invisible manner and accurately extract the hidden messages. Specifically, we design a coupled secured feature attribute to replace the original 3DGS's spherical harmonics coefficients and then use a scene decoder and a message decoder to disentangle the original RGB scene and the hidden message. Extensive experiments demonstrated that the proposed GS-Hider can effectively conceal multimodal messages without compromising rendering quality and possesses exceptional security, robustness, capacity, and flexibility. Our project is available at: https://xuanyuzhang21.github.io/project/gshider.
Related papers
- 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh [0.552480439325792]
3DGS-to-PC is capable of transforming 3DGS scenes into dense, high-accuracy point clouds.
This package is highly customisable and capability of simple integration into existing 3DGS pipelines.
arXiv Detail & Related papers (2025-01-13T16:52:28Z) - CLIP-GS: Unifying Vision-Language Representation with 3D Gaussian Splatting [88.24743308058441]
We present CLIP-GS, a novel multimodal representation learning framework grounded in 3DGS.
We develop an efficient way to generate triplets of 3DGS, images, and text, facilitating CLIP-GS in learning unified multimodal representations.
arXiv Detail & Related papers (2024-12-26T09:54:25Z) - EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene [19.20846992699852]
We propose EGSRAL, a 3D GS-based method that relies solely on training images without extra annotations.
EGSRAL enhances 3D GS's capability to model both dynamic objects and static backgrounds.
We also propose a grouping strategy for vanilla 3D GS to address perspective issues in rendering large-scale, complex scenes.
arXiv Detail & Related papers (2024-12-20T04:21:54Z) - Feat2GS: Probing Visual Foundation Models with Gaussian Splatting [53.86049874165888]
Visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images.
We introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images.
We conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM.
arXiv Detail & Related papers (2024-12-12T18:59:28Z) - WATER-GS: Toward Copyright Protection for 3D Gaussian Splatting via Universal Watermarking [44.335142946449245]
WATER-GS is a novel method designed to protect 3DGS copyrights through a universal watermarking strategy.
We introduce a pre-trained watermark decoder, treating raw 3DGS generative modules as potential watermarks to ensure imperceptibility.
We implement novel 3D distortion layers to enhance the robustness of the embedded watermark against common real-world distortions of point cloud data.
arXiv Detail & Related papers (2024-12-07T16:44:22Z) - Splats in Splats: Embedding Invisible 3D Watermark within Gaussian Splatting [28.790625685438677]
WaterGS is the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS.
Tests indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed.
arXiv Detail & Related papers (2024-12-04T08:40:11Z) - GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting [41.90891053671943]
Digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models.
Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images.
We propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS.
arXiv Detail & Related papers (2024-10-31T08:08:54Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D
Pretraining from Real-World Data [73.06536202251915]
3D Shape represented as point cloud has achieve advancements in multimodal pre-training to align image and language descriptions.
We propose GS-CLIP for the first attempt to introduce 3DGS into multimodal pre-training to enhance 3D representation.
arXiv Detail & Related papers (2024-02-09T05:46:47Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
Existing studies for gait recognition are dominated by 2D representations like the silhouette or skeleton of the human body in constrained scenes.
This paper aims to explore dense 3D representations for gait recognition in the wild.
We build the first large-scale 3D representation-based gait recognition dataset, named Gait3D.
arXiv Detail & Related papers (2022-04-06T03:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.