GS-Hider: Hiding Messages into 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2405.15118v2
- Date: Mon, 07 Oct 2024 12:28:43 GMT
- Title: GS-Hider: Hiding Messages into 3D Gaussian Splatting
- Authors: Xuanyu Zhang, Jiarui Meng, Runyi Li, Zhipei Xu, Yongbing Zhang, Jian Zhang,
- Abstract summary: 3D Gaussian Splatting (3DGS) has already become the emerging research focus in the fields of 3D scene reconstruction and novel view synthesis.
It is crucial to protect the copyright, integrity, and privacy of such 3D assets.
We propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed 3D scenes and images into original GS point clouds.
- Score: 18.16759704305008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) has already become the emerging research focus in the fields of 3D scene reconstruction and novel view synthesis. Given that training a 3DGS requires a significant amount of time and computational cost, it is crucial to protect the copyright, integrity, and privacy of such 3D assets. Steganography, as a crucial technique for encrypted transmission and copyright protection, has been extensively studied. However, it still lacks profound exploration targeted at 3DGS. Unlike its predecessor NeRF, 3DGS possesses two distinct features: 1) explicit 3D representation; and 2) real-time rendering speeds. These characteristics result in the 3DGS point cloud files being public and transparent, with each Gaussian point having a clear physical significance. Therefore, ensuring the security and fidelity of the original 3D scene while embedding information into the 3DGS point cloud files is an extremely challenging task. To solve the above-mentioned issue, we first propose a steganography framework for 3DGS, dubbed GS-Hider, which can embed 3D scenes and images into original GS point clouds in an invisible manner and accurately extract the hidden messages. Specifically, we design a coupled secured feature attribute to replace the original 3DGS's spherical harmonics coefficients and then use a scene decoder and a message decoder to disentangle the original RGB scene and the hidden message. Extensive experiments demonstrated that the proposed GS-Hider can effectively conceal multimodal messages without compromising rendering quality and possesses exceptional security, robustness, capacity, and flexibility. Our project is available at: https://xuanyuzhang21.github.io/project/gshider.
Related papers
- All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting [12.651540251589635]
KeySS is a novel end-to-end key-secured 3D steganography framework.
It incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention.
It achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels.
arXiv Detail & Related papers (2025-03-10T11:21:07Z) - SecureGS: Boosting the Security and Fidelity of 3D Gaussian Splatting Steganography [25.798754061997254]
3D Gaussian Splatting (3DGS) has emerged as a premier method for 3D representation due to its real-time rendering and high-quality outputs.
Traditional NeRF steganography methods fail to address the explicit nature of 3DGS since its point cloud files are publicly accessible.
We propose a SecureGS framework inspired by Scaffold-GS's anchor point design and neural decoding.
arXiv Detail & Related papers (2025-03-08T08:11:00Z) - UniGS: Unified Language-Image-3D Pretraining with Gaussian Splatting [68.37013525040891]
We propose UniGS, integrating 3D Gaussian Splatting (3DGS) into multi-modal pre-training to enhance the 3D representation.
We demonstrate the effectiveness of UniGS in learning a more general and stronger aligned multi-modal representation.
arXiv Detail & Related papers (2025-02-25T05:10:22Z) - X-SG$^2$S: Safe and Generalizable Gaussian Splatting with X-dimensional Watermarks [53.976082636337374]
We propose a new framework X-SG$2$S which can simultaneously watermark 1 to 3D messages while keeping the original 3DGS scene almost unchanged.
X-SG$2$S is the first to unify 1 to 3D watermarking model for 3DGS and the first framework to add multi-modal watermarks simultaneous in one 3DGS.
arXiv Detail & Related papers (2025-02-13T17:59:15Z) - EGSRAL: An Enhanced 3D Gaussian Splatting based Renderer with Automated Labeling for Large-Scale Driving Scene [19.20846992699852]
We propose EGSRAL, a 3D GS-based method that relies solely on training images without extra annotations.
EGSRAL enhances 3D GS's capability to model both dynamic objects and static backgrounds.
We also propose a grouping strategy for vanilla 3D GS to address perspective issues in rendering large-scale, complex scenes.
arXiv Detail & Related papers (2024-12-20T04:21:54Z) - Feat2GS: Probing Visual Foundation Models with Gaussian Splatting [53.86049874165888]
Visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images.
We introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images.
We conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM.
arXiv Detail & Related papers (2024-12-12T18:59:28Z) - Splats in Splats: Embedding Invisible 3D Watermark within Gaussian Splatting [28.790625685438677]
WaterGS is the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS.
Tests indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed.
arXiv Detail & Related papers (2024-12-04T08:40:11Z) - GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting [70.81218231206617]
GuardSplat is an innovative and efficient framework for watermarking 3DGS assets.
Message Embedding module seamlessly embeds messages into the SH features of each 3D Gaussian while preserving the original 3D structure.
Anti-distortion Message Extraction module improves robustness against various distortions.
arXiv Detail & Related papers (2024-11-29T17:59:03Z) - GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting [41.90891053671943]
Digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models.
Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images.
We propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS.
arXiv Detail & Related papers (2024-10-31T08:08:54Z) - GaussReg: Fast 3D Registration with Gaussian Splatting [10.049564362260055]
Point cloud registration is a fundamental problem for large-scale 3D scene scanning and reconstruction.
We propose GaussReg, a novel coarse-to-fine framework for point cloud registration.
Our method achieves state-of-the-art performance on multiple datasets.
arXiv Detail & Related papers (2024-07-07T04:35:51Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting [141.05924680451804]
StyleGaussian is a novel 3D style transfer technique.
It allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps)
arXiv Detail & Related papers (2024-03-12T16:44:52Z) - GS-CLIP: Gaussian Splatting for Contrastive Language-Image-3D
Pretraining from Real-World Data [73.06536202251915]
3D Shape represented as point cloud has achieve advancements in multimodal pre-training to align image and language descriptions.
We propose GS-CLIP for the first attempt to introduce 3DGS into multimodal pre-training to enhance 3D representation.
arXiv Detail & Related papers (2024-02-09T05:46:47Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
We propose Gaussian Grouping, which extends Gaussian Splatting to jointly reconstruct and segment anything in open-world 3D scenes.
Compared to the implicit NeRF representation, we show that the grouped 3D Gaussians can reconstruct, segment and edit anything in 3D with high visual quality, fine granularity and efficiency.
arXiv Detail & Related papers (2023-12-01T17:09:31Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z) - Gait Recognition in the Wild with Dense 3D Representations and A
Benchmark [86.68648536257588]
Existing studies for gait recognition are dominated by 2D representations like the silhouette or skeleton of the human body in constrained scenes.
This paper aims to explore dense 3D representations for gait recognition in the wild.
We build the first large-scale 3D representation-based gait recognition dataset, named Gait3D.
arXiv Detail & Related papers (2022-04-06T03:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.