論文の概要: OptLLM: Optimal Assignment of Queries to Large Language Models
- arxiv url: http://arxiv.org/abs/2405.15130v1
- Date: Fri, 24 May 2024 01:05:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:28:28.354561
- Title: OptLLM: Optimal Assignment of Queries to Large Language Models
- Title(参考訳): OptLLM: 大規模言語モデルに対するクエリの最適割り当て
- Authors: Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, Zhiqiang Li,
- Abstract要約: 大規模言語モデル(LLM)における費用効率の高いクエリ割り当て問題に対処するフレームワークを提案する。
当社のフレームワークであるOpsLLMは、ユーザに対して、予算の制約やパフォーマンスの優先事項に合わせて、選択可能なさまざまな最適なソリューションを提供します。
OptLLMの有効性を評価するため,テキスト分類,質問応答,感情分析,推論,ログ解析など,さまざまなタスクについて広範な実験を行った。
- 参考スコア(独自算出の注目度): 12.07164196530872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have garnered considerable attention owing to their remarkable capabilities, leading to an increasing number of companies offering LLMs as services. Different LLMs achieve different performance at different costs. A challenge for users lies in choosing the LLMs that best fit their needs, balancing cost and performance. In this paper, we propose a framework for addressing the cost-effective query allocation problem for LLMs. Given a set of input queries and candidate LLMs, our framework, named OptLLM, provides users with a range of optimal solutions to choose from, aligning with their budget constraints and performance preferences, including options for maximizing accuracy and minimizing cost. OptLLM predicts the performance of candidate LLMs on each query using a multi-label classification model with uncertainty estimation and then iteratively generates a set of non-dominated solutions by destructing and reconstructing the current solution. To evaluate the effectiveness of OptLLM, we conduct extensive experiments on various types of tasks, including text classification, question answering, sentiment analysis, reasoning, and log parsing. Our experimental results demonstrate that OptLLM substantially reduces costs by 2.40% to 49.18% while achieving the same accuracy as the best LLM. Compared to other multi-objective optimization algorithms, OptLLM improves accuracy by 2.94% to 69.05% at the same cost or saves costs by 8.79% and 95.87% while maintaining the highest attainable accuracy.
- Abstract(参考訳): 大きな言語モデル(LLM)は、その顕著な能力のためにかなりの注目を集めており、LLMをサービスとして提供する企業が増えている。
異なるLCMは異なるコストで異なる性能を達成する。
ユーザにとっての課題は、ニーズに最も適合するLCMを選択し、コストとパフォーマンスのバランスをとることだ。
本稿では,LLMにおける費用効率の高いクエリ割り当て問題に対処するフレームワークを提案する。
入力クエリのセットと候補 LLM が与えられた後、OptLLM というフレームワークは、ユーザに対して、予算の制約やパフォーマンスの優先事項に合わせて、選択する最適なソリューションを提供し、精度の最大化やコストの最小化のためのオプションを提供します。
OptLLMは、不確実性推定を伴う多ラベル分類モデルを用いて、各クエリ上での候補LLMの性能を予測し、その後、現在の解をデストラクトし、再構成することで、非支配的な解のセットを反復的に生成する。
OptLLMの有効性を評価するため,テキスト分類,質問応答,感情分析,推論,ログ解析など,さまざまなタスクについて広範な実験を行った。
実験の結果,OptLLMは最高のLCMと同じ精度でコストを2.40%から49.18%削減できることがわかった。
他の多目的最適化アルゴリズムと比較して、OptLLMは精度を2.94%から69.05%に改善し、高い精度を維持しながらコストを8.79%、95.87%削減する。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なタスクで顕著な成功を収めたため、人気が高まっている。
しかしながら、個々のLLMは、トレーニングバイアス、モデルサイズ、使用されるデータセットなどの要因のために、複雑なタスクに適用する場合に制限がある。
本稿では,入力クエリを大規模プールからLLMの最も適切なサブセットに誘導する新しいアルゴリズムであるSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs [21.689490112983677]
分類タスクに最適な大言語モデル(LLM)に各クエリを動的にルーティングするフレームワークであるMetaLLMを紹介する。
多武装バンディットとして選択問題をフレーミングすることで、MetaLLMは不確実性の下で予測精度とコスト効率のバランスをとる。
LLMプラットフォーム上で実施した本実験では,メタLLMの有効性を実世界のシナリオで示す。
論文 参考訳(メタデータ) (2024-07-15T15:45:07Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - Towards Optimizing the Costs of LLM Usage [4.032848774697859]
理論的にも経験的にも、品質とコストを両立させる最適化問題について検討する。
トークンを品質に配慮した方法で低減するためのいくつかの決定論的手法を提案する。
本手法は,品質を4%から7%向上させながら,コストを40%から90%削減する。
論文 参考訳(メタデータ) (2024-01-29T16:36:31Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
本稿では,Large Language Models (LLMs) を用いた不確実性低減フレームワークを提案する。
LLMは、先進的な言語能力と、広範なデータサイエンスの専門知識を持たない人々に対して大きな利点をもたらす「従量制」モデルに便乗している。
我々は,本手法が効率的かつ効果的であることを示し,実世界のタスクに有望な応用を提供する。
論文 参考訳(メタデータ) (2024-01-07T09:06:58Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。