論文の概要: Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques
- arxiv url: http://arxiv.org/abs/2405.15134v2
- Date: Mon, 27 May 2024 01:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:49:28.282803
- Title: Efficient Biomedical Entity Linking: Clinical Text Standardization with Low-Resource Techniques
- Title(参考訳): 効果的なバイオメディカルエンティティリンク:低リソース技術による臨床テキスト標準化
- Authors: Akshit Achara, Sanand Sasidharan, Gagan N,
- Abstract要約: 複数の用語は、臨床エンティティと呼ばれることができる同じコア概念を参照することができる。
UMLS(Unified Medical Language System)のようなオントロジーは、何百万もの臨床エンティティを格納するために開発・維持されている。
そこで本稿では,エンティティの曖昧さを解消するために,コンテキストベースとコンテキストレスの省力化手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical text is rich in information, with mentions of treatment, medication and anatomy among many other clinical terms. Multiple terms can refer to the same core concepts which can be referred as a clinical entity. Ontologies like the Unified Medical Language System (UMLS) are developed and maintained to store millions of clinical entities including the definitions, relations and other corresponding information. These ontologies are used for standardization of clinical text by normalizing varying surface forms of a clinical term through Biomedical entity linking. With the introduction of transformer-based language models, there has been significant progress in Biomedical entity linking. In this work, we focus on learning through synonym pairs associated with the entities. As compared to the existing approaches, our approach significantly reduces the training data and resource consumption. Moreover, we propose a suite of context-based and context-less reranking techniques for performing the entity disambiguation. Overall, we achieve similar performance to the state-of-the-art zero-shot and distant supervised entity linking techniques on the Medmentions dataset, the largest annotated dataset on UMLS, without any domain-based training. Finally, we show that retrieval performance alone might not be sufficient as an evaluation metric and introduce an article level quantitative and qualitative analysis to reveal further insights on the performance of entity linking methods.
- Abstract(参考訳): 臨床テキストは情報に富み、治療、薬学、解剖学など多くの臨床用語で言及されている。
複数の用語は、臨床エンティティと呼ばれることができる同じコア概念を参照することができる。
UMLS(Unified Medical Language System)のようなオントロジーは、定義、関係、その他の対応する情報を含む何百万もの臨床エンティティを格納するために開発・維持されている。
これらのオントロジーは、バイオメディカルエンティティリンクを通じて、臨床用語の様々な表面形態を標準化することにより、臨床テキストの標準化に使用される。
トランスフォーマーベースの言語モデルの導入により、バイオメディカルなエンティティリンクが大幅に進歩した。
本研究は,エンティティに関連付けられた同義語ペアを通して学習することに焦点を当てる。
既存のアプローチと比較して、我々のアプローチはトレーニングデータとリソース消費を大幅に削減します。
さらに,エンティティの曖昧さを解消するためのコンテキストベースおよびコンテキストレスリグレード手法を提案する。
全体としては、ドメインベースのトレーニングなしにUMLS上で最大の注釈付きデータセットであるMedmentionsデータセット上で、最先端のゼロショットと遠隔教師付きエンティティリンク技術に類似したパフォーマンスを実現する。
最後に,検索性能だけでは評価基準として不十分であることを示すとともに,記事の量的・質的な分析を導入して,エンティティリンク手法の性能に関するさらなる知見を明らかにする。
関連論文リスト
- ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
本研究は、医療エンティティリンクのための2相パイプラインを用いた新しいアプローチであるClinLinkerを提示する。
SapBERTベースのバイエンコーダに基づいており、その後クロスエンコーダで再ランクされ、スペインの医療概念に合わせた対照的な学習戦略に従って訓練されている。
論文 参考訳(メタデータ) (2024-04-09T15:04:27Z) - Semantic Textual Similarity Assessment in Chest X-ray Reports Using a
Domain-Specific Cosine-Based Metric [1.7802147489386628]
本稿では,生成医療報告と基礎的真実とのセマンティックな類似性を評価するための新しいアプローチを提案する。
本手法の有効性を検証し,医学的文脈におけるドメイン固有の意味的類似性を評価する。
論文 参考訳(メタデータ) (2024-02-19T07:48:25Z) - MED-SE: Medical Entity Definition-based Sentence Embedding [1.0828616610785524]
本稿では,医学的実体の定義を生かした,臨床テキストのための新しい教師なしコントラスト学習フレームワークを提案する。
私たちが設計したエンティティ中心の環境では、MED-SEは性能が大幅に向上し、SimCSEを含む既存の教師なし手法では性能が劣化している。
論文 参考訳(メタデータ) (2022-12-09T09:10:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Drug and Disease Interpretation Learning with Biomedical Entity
Representation Transformer [9.152161078854146]
自由形式のテキストにおける概念正規化は、あらゆるテキストマイニングパイプラインにおいて重要なステップです。
微調整BERTアーキテクチャに基づくシンプルで効果的な2段階のニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2021-01-22T20:01:25Z) - A Practical Approach towards Causality Mining in Clinical Text using
Active Transfer Learning [2.6125458645126907]
因果関係マイニングは、最先端の自然言語処理技術の応用を必要とする活発な研究領域である。
この研究は、臨床テキストを因果知識に変換するフレームワークを作成することを目的としている。
論文 参考訳(メタデータ) (2020-12-10T06:51:13Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual
Embeddings Using the Unified Medical Language System Metathesaurus [73.86656026386038]
事前学習プロセス中にドメイン知識を統合するコンテキスト埋め込みモデルであるUmlsBERTを紹介する。
これらの2つの戦略を適用することで、UmlsBERTは、臨床領域の知識を単語埋め込みにエンコードし、既存のドメイン固有モデルより優れている。
論文 参考訳(メタデータ) (2020-10-20T15:56:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。