論文の概要: Enhancing Learning with Label Differential Privacy by Vector Approximation
- arxiv url: http://arxiv.org/abs/2405.15150v1
- Date: Fri, 24 May 2024 02:08:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 18:28:28.267519
- Title: Enhancing Learning with Label Differential Privacy by Vector Approximation
- Title(参考訳): ベクトル近似によるラベル微分プライバシーによる学習の促進
- Authors: Puning Zhao, Rongfei Fan, Huiwen Wu, Qingming Li, Jiafei Wu, Zhe Liu,
- Abstract要約: ラベル微分プライバシ(DP)は、データセットのトレーニングにおいてラベルのプライバシを保護するフレームワークである。
既存のアプローチは、ラベルをランダムに反転させることで、ラベルのプライバシを保護する。
本稿では,実装が容易で,計算オーバーヘッドがほとんどないベクトル近似手法を提案する。
- 参考スコア(独自算出の注目度): 12.212865127830872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label differential privacy (DP) is a framework that protects the privacy of labels in training datasets, while the feature vectors are public. Existing approaches protect the privacy of labels by flipping them randomly, and then train a model to make the output approximate the privatized label. However, as the number of classes $K$ increases, stronger randomization is needed, thus the performances of these methods become significantly worse. In this paper, we propose a vector approximation approach, which is easy to implement and introduces little additional computational overhead. Instead of flipping each label into a single scalar, our method converts each label into a random vector with $K$ components, whose expectations reflect class conditional probabilities. Intuitively, vector approximation retains more information than scalar labels. A brief theoretical analysis shows that the performance of our method only decays slightly with $K$. Finally, we conduct experiments on both synthesized and real datasets, which validate our theoretical analysis as well as the practical performance of our method.
- Abstract(参考訳): ラベル微分プライバシ(DP)は、データセットのトレーニングにおいてラベルのプライバシを保護するフレームワークである。
既存のアプローチは、ラベルをランダムに反転させることで、ラベルのプライバシを保護する。
しかし、クラス数K$が増加するにつれて、より強いランダム化が必要となり、これらの手法の性能は著しく悪化する。
本稿では,実装が容易で,計算オーバーヘッドの増大が少ないベクトル近似手法を提案する。
提案手法では,各ラベルを1つのスカラーに変換する代わりに,各ラベルを,クラス条件の確率を反映した$K$成分のランダムベクトルに変換する。
直感的には、ベクトル近似はスカラーラベルよりも多くの情報を保持する。
簡単な理論的解析により、我々の手法の性能はわずかに$K$で低下する。
最後に, 合成データと実データの両方を用いて実験を行い, 理論的解析と本手法の実用性について検証した。
関連論文リスト
- Learning with Confidence: Training Better Classifiers from Soft Labels [0.0]
教師付き機械学習では、モデルは通常、ハードラベルを持つデータ、すなわちクラスメンバーシップの明確な割り当てを用いて訓練される。
クラスラベル上の離散確率分布として表されるラベルの不確実性を組み込むことで,分類モデルの予測性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2024-09-24T13:12:29Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Positive Unlabeled Contrastive Learning [14.975173394072053]
自己教師型事前学習パラダイムを古典的正の未ラベル(PU)設定に拡張する。
PU固有のクラスタリング手法を用いて,ラベルのないサンプルを擬似ラベル付けする手法を開発した。
提案手法は,いくつかの標準PUベンチマークデータセットに対して,最先端のPU手法を手作業で上回っている。
論文 参考訳(メタデータ) (2022-06-01T20:16:32Z) - Trustable Co-label Learning from Multiple Noisy Annotators [68.59187658490804]
監督されたディープラーニングは、大量の注釈付き例に依存している。
典型的な方法は、複数のノイズアノテータから学習することである。
本稿では,emphTrustable Co-label Learning (TCL)と呼ばれるデータ効率のよい手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T16:57:00Z) - Does Label Differential Privacy Prevent Label Inference Attacks? [26.87328379562665]
ラベル差分プライバシー(ラベルDP)は、パブリック機能と機密性の高いプライベートラベルを持つデータセット上で、プライベートMLモデルをトレーニングするための一般的なフレームワークである。
厳格なプライバシー保証にもかかわらず、実際にはラベルDPはラベル推論攻撃(LIAs)を妨げない。
論文 参考訳(メタデータ) (2022-02-25T20:57:29Z) - How to Leverage Unlabeled Data in Offline Reinforcement Learning [125.72601809192365]
オフライン強化学習(RL)は、静的データセットから制御ポリシーを学ぶことができるが、標準のRLメソッドと同様に、移行毎に報酬アノテーションを必要とする。
1つの自然な解決策は、ラベル付けされたデータから報酬関数を学習し、ラベル付けされていないデータをラベル付けすることである。
ラベルのないデータに単純に報酬をゼロにする方が、効果的なデータ共有につながる。
論文 参考訳(メタデータ) (2022-02-03T18:04:54Z) - Optimizing Diffusion Rate and Label Reliability in a Graph-Based
Semi-supervised Classifier [2.4366811507669124]
Local and Global Consistency (LGC)アルゴリズムは、グラフベースの半教師付き半教師付き(GSSL)分類器の1つである。
ラベル付きインスタンスの自己影響を取り除くことは、どのように有用か、そして、それがアウト・ワン・アウトエラーにどのように関係するかについて議論する。
本研究では,ラベルの信頼性と拡散率を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T16:58:52Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
部分ラベル学習は、典型的には弱教師付き学習問題である。
既存のほとんどのアプローチでは、トレーニングサンプルの間違ったラベルがランダムに候補ラベルとして選択されていると仮定している。
本稿では,各例が実数で構成された潜在ラベル分布と関連していると仮定する。
論文 参考訳(メタデータ) (2021-10-25T12:50:26Z) - Multi-class Probabilistic Bounds for Self-learning [13.875239300089861]
Pseudo-labelingはエラーを起こしやすいため、ラベルなしのトレーニングデータにノイズのあるラベルを追加するリスクがある。
本稿では,多クラス分類シナリオにおける自己学習を部分的にラベル付きデータで分析する確率的枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:57:37Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
我々は、ラベルのない例を使ってモデルをトレーニングする半教師付き学習(SSL)アプローチを提案する。
提案手法であるDashは、ラベルなしデータ選択の観点から適応性を享受する。
論文 参考訳(メタデータ) (2021-09-01T23:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。