論文の概要: Redundant Semantic Environment Filling via Misleading-Learning for Fair Deepfake Detection
- arxiv url: http://arxiv.org/abs/2405.15173v2
- Date: Wed, 08 Oct 2025 19:27:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.463567
- Title: Redundant Semantic Environment Filling via Misleading-Learning for Fair Deepfake Detection
- Title(参考訳): フェアディープフェイク検出のためのミスリーディングラーニングによる冗長なセマンティック環境
- Authors: Xinan He, Yue Zhou, Shu Hu, Bin Li, Jiwu Huang, Feng Ding,
- Abstract要約: ディープフェイク技術は、デジタルコミュニケーションにおける信頼の保護と個人保護に不可欠である。
現在の検出器はしばしば二重オーバーフィッティングに悩まされ、特定の指紋と特定の人口統計特性の両方に過度に特化している。
本稿では,無作為な環境に潜伏空間を投入するミスリーディング学習という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 41.53648814855822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting falsified faces generated by Deepfake technology is essential for safeguarding trust in digital communication and protecting individuals. However, current detectors often suffer from a dual-overfitting: they become overly specialized in both specific forgery fingerprints and particular demographic attributes. Critically, most existing methods overlook the latter issue, which results in poor fairness: faces from certain demographic groups, such as different genders or ethnicities, are consequently more difficult to reliably detect. To address this challenge, we propose a novel strategy called misleading-learning, which populates the latent space with a multitude of redundant environments. By exposing the detector to a sufficiently rich and balanced variety of high-level information for demographic fairness, our approach mitigates demographic bias while maintaining a high detection performance level. We conduct extensive evaluations on fairness, intra-domain detection, cross-domain generalization, and robustness. Experimental results demonstrate that our framework achieves superior fairness and generalization compared to state-of-the-art approaches.
- Abstract(参考訳): ディープフェイク技術による偽造顔の検出は、デジタルコミュニケーションにおける信頼の保護と個人保護に不可欠である。
しかし、現在の検出器はしばしば二重オーバーフィッティングに悩まされ、特定の偽の指紋と特定の人口統計特性の両方に過度に特化している。
批判的なことに、既存のほとんどの手法は後者の問題を見落としており、これは不公平を招き、異なる性別や民族などの特定の人口集団の顔は、より確実に検出することが困難である。
この課題に対処するために,複数の冗長環境に潜伏空間を投入するミスリーディング学習という新しい手法を提案する。
本手法は, 高い検出性能を維持しつつ, 人口統計上の偏りを軽減し, 十分なリッチでバランスの取れた高レベルの情報に曝露することによって, 人口統計学上の偏見を緩和する。
フェアネス,ドメイン内検出,クロスドメイン一般化,ロバストネスについて広範な評価を行った。
実験により,本フレームワークは最先端の手法と比較して,優れた公正性と一般化を実現することが示された。
関連論文リスト
- Rethinking Occlusion in FER: A Semantic-Aware Perspective and Go Beyond [10.015531203047598]
顔の閉塞を曖昧にするための補助的マルチモーダル・セマンティックガイダンスを導入したORSANetを提案する。
また,性差や性差などの内在性雑音を緩和するために,顔のランドマークをスパース幾何学として導入する。
提案するORSANetは,SOTA認識性能を実現する。
論文 参考訳(メタデータ) (2025-07-21T09:04:29Z) - Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning [65.94127546086156]
本稿では,ポイントクラウド上のセマンティックセマンティックセグメンテーションのための適応的マージン比較学習法を提案する。
まず,両立度推定フレームワークにコントラスト学習を組み込んだAMContrast3Dを設計する。
共同トレーニングの洞察に触発されて、並列にトレーニングされた2つのブランチとAMContrast3D++を統合することを提案する。
論文 参考訳(メタデータ) (2025-07-09T07:00:32Z) - Trident: Detecting Face Forgeries with Adversarial Triplet Learning [5.101710685818588]
textitTridentは、偽造のニュアンスな違いを分離するために、キュレートされた三つ子で訓練される。
擬似判別器を用いたドメイン・アドバイサル・トレーニングは、擬似非依存表現への埋め込みモデルを導出する。
論文 参考訳(メタデータ) (2025-06-29T11:17:25Z) - Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective [54.605073936695575]
グラフ異常検出は、Webセキュリティやファイナンシャル不正検出などの分野で広く応用されているグラフベースのデータにおいて、異常なパターンを特定することを目的としている。
既存の手法は対照的な学習に依存しており、ノードとその局所部分グラフの間のより低い類似性は異常を示すと仮定する。
干渉エッジの存在は、対照的な学習過程を損なう破壊的なノイズをもたらすため、この仮定を無効にする。
コントラスト学習プロセスにおいて重要な干渉源を特定するために,複数スケールの異常認識モジュールを含むクリーンビュー拡張グラフ異常検出フレームワーク(CVGAD)を提案する。
論文 参考訳(メタデータ) (2025-05-23T15:05:56Z) - From Visual Explanations to Counterfactual Explanations with Latent Diffusion [11.433402357922414]
本稿では,近年の顕著な研究における2つの課題に対処するための新しいアプローチを提案する。
まず、ターゲットクラスの"概念"と元のクラスを区別するために、どの特定の反事実的特徴が重要かを決定する。
第二に、非ロバスト分類器に対して、対向的に堅牢なモデルのサポートに頼ることなく、重要な説明を提供する。
論文 参考訳(メタデータ) (2025-04-12T13:04:00Z) - Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective [100.54185280153753]
分類器なし誘導と分類器なし誘導の両方が,微分拡散軌道を決定境界から遠ざけることによって条件付き生成を実現することがわかった。
本研究では,フローマッチングをベースとした汎用的な後処理ステップを提案し,事前学習した復調拡散モデルに対する学習分布と実データ分布とのギャップを小さくする。
論文 参考訳(メタデータ) (2025-03-13T17:59:59Z) - Generalized Interpolating Discrete Diffusion [65.74168524007484]
仮面拡散はその単純さと有効性のために一般的な選択である。
離散拡散過程を補間する一般族の理論的バックボーンを導出する。
GIDDのフレキシビリティをエクスプロイトし、マスクと均一ノイズを組み合わせたハイブリッドアプローチを探索する。
論文 参考訳(メタデータ) (2025-03-06T14:30:55Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
異常検出法は拡散モデルを用いて任意の異常画像が与えられたときの正常サンプルの生成または再構成を行う。
われわれは,拡散モデルが「重度忠実幻覚」と「破滅的な忘れ」に悩まされていることを発見した。
本研究では,安定な連続学習を実現するために勾配予測を用いた連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-27T07:47:27Z) - Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
微分自由拡散多様体制約勾配(FreeMCG)を導入する。
FreeMCGは、与えられたニューラルネットワークの説明可能性を改善する基盤として機能する。
提案手法は,XAIツールが期待する本質性を保ちながら,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:15:14Z) - Rethinking Weak-to-Strong Augmentation in Source-Free Domain Adaptive Object Detection [38.596886094105216]
Source-Free Domain Adaptive Object Detection (SFOD) は、検出器(ソースドメインで事前訓練された)を新しい未実装のターゲットドメインに転送することを目的としている。
本稿では,Wak-to-Strong Contrastive Learning (WSCoL) アプローチを紹介する。
論文 参考訳(メタデータ) (2024-10-07T23:32:06Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - Decoupling Forgery Semantics for Generalizable Deepfake Detection [6.1822981823804835]
本稿では,DeepFakeの検出手法を提案し,セマンティックデカップリングによる検出の一般化を促進する。
FF++, Celeb-DF, DFD, DFDCデータセットの評価は, 本手法の優れた検出と一般化性能を示す。
論文 参考訳(メタデータ) (2024-06-14T06:00:14Z) - Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models [55.99654128127689]
Visual Foundation Models (VFM) は、弱い教師付きピクセル対ポイントのコントラスト蒸留のためのセマンティックラベルを生成するために使用される。
我々は,空間分布とカテゴリー周波数の不均衡に対応するために,点のサンプリング確率を適応させる。
我々の手法は、下流タスクにおける既存の画像からLiDARへのコントラスト蒸留法を一貫して超越している。
論文 参考訳(メタデータ) (2024-05-23T07:48:19Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
本研究では,意味的コントラスト型ブートストラップ法(Scob)を用いて,オブジェクト間の関係を徐々に回復する手法を提案する。
次に、アイコン的オブジェクトレベルの表現を抽出する再帰的セマンティックマスク変換器を提案する。
大規模な実験結果から,提案手法が最先端のモデルを超えていることが示唆された。
論文 参考訳(メタデータ) (2023-07-15T01:59:53Z) - STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection [80.04000067312428]
本稿では,意味的あいまいさの特性を利用した自己適応型あいまいさ低減(STAR)の損失を提案する。
意味的あいまいさは異方性予測分布をもたらすことが分かり、予測分布を用いて意味的あいまいさを表現する。
また,分布の異常変化とモデルの初期収束を回避できる2種類の固有値制限法を提案する。
論文 参考訳(メタデータ) (2023-06-05T10:33:25Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Real-centric Consistency Learning for Deepfake Detection [8.313889744011933]
両クラスの不変表現を学習することで深度検出問題に取り組む。
本稿では,潜在世代関連特徴を抽出するための,意味論的ペアリング手法を提案する。
特徴レベルでは、表現空間における自然面の中心に基づいて、潜在的な限界特徴をシミュレートする強正のマイニングと合成法を設計する。
論文 参考訳(メタデータ) (2022-05-15T07:01:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。