論文の概要: Adversarial Attacks on Hidden Tasks in Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2405.15244v2
- Date: Tue, 28 May 2024 00:33:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 11:18:53.430143
- Title: Adversarial Attacks on Hidden Tasks in Multi-Task Learning
- Title(参考訳): マルチタスク学習における隠れタスクの敵対的攻撃
- Authors: Yu Zhe, Rei Nagaike, Daiki Nishiyama, Kazuto Fukuchi, Jun Sakuma,
- Abstract要約: マルチタスクモデルの非ターゲットタスクと共有バックボーンネットワークからの知識を活用する新しい逆攻撃手法を提案する。
CelebAとDeepFashionデータセットの実験結果から,隠れタスクの精度を劣化させる手法の有効性が示された。
- 参考スコア(独自算出の注目度): 8.88375168590583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models are susceptible to adversarial attacks, where slight perturbations to input data lead to misclassification. Adversarial attacks become increasingly effective with access to information about the targeted classifier. In the context of multi-task learning, where a single model learns multiple tasks simultaneously, attackers may aim to exploit vulnerabilities in specific tasks with limited information. This paper investigates the feasibility of attacking hidden tasks within multi-task classifiers, where model access regarding the hidden target task and labeled data for the hidden target task are not available, but model access regarding the non-target tasks is available. We propose a novel adversarial attack method that leverages knowledge from non-target tasks and the shared backbone network of the multi-task model to force the model to forget knowledge related to the target task. Experimental results on CelebA and DeepFashion datasets demonstrate the effectiveness of our method in degrading the accuracy of hidden tasks while preserving the performance of visible tasks, contributing to the understanding of adversarial vulnerabilities in multi-task classifiers.
- Abstract(参考訳): 深層学習モデルは、入力データに対するわずかな摂動が誤分類につながる敵攻撃の影響を受けやすい。
敵攻撃は、標的分類器に関する情報にアクセスすることでますます効果的になる。
ひとつのモデルが複数のタスクを同時に学習するマルチタスク学習のコンテキストでは、攻撃者は限られた情報で特定のタスクの脆弱性を悪用する。
本稿では,隠蔽対象タスクと隠蔽対象タスクのラベル付きデータに関するモデルアクセスは利用できないが,非ターゲットタスクに関するモデルアクセスが利用可能であるマルチタスク分類器内での隠蔽タスクの攻撃可能性について検討する。
本研究では,非ターゲットタスクからの知識とマルチタスクモデルの共有バックボーンネットワークを利用して,対象タスクに関する知識を忘れるように強制する,新たな敵攻撃手法を提案する。
CelebAおよびDeepFashionデータセットによる実験結果から,可視タスクの性能を維持しながら隠れタスクの精度を低下させる手法の有効性が示され,マルチタスク分類器における敵の脆弱性の理解に寄与した。
関連論文リスト
- Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
PVM(Pre-trained Vision Model)は、下流タスクを微調整する際、例外的なパフォーマンスのため、主要なコンポーネントとなっている。
本稿では,PVMにバックドアを埋め込んだトロイの木馬攻撃を提案する。
バックドア攻撃の成功において、クロスタスクアクティベーションとショートカット接続がもたらす課題を強調します。
論文 参考訳(メタデータ) (2023-12-23T05:51:40Z) - TIDo: Source-free Task Incremental Learning in Non-stationary
Environments [0.0]
モデルベースのエージェントを更新して新しいターゲットタスクを学習するには、過去のトレーニングデータを格納する必要があります。
ラベル付きターゲットデータセットの制限を克服するタスクインクリメンタル学習手法はほとんどない。
本研究では,非定常的および目標的タスクに適応可能なワンショットタスクインクリメンタル学習手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T02:19:45Z) - Data Poisoning Attack Aiming the Vulnerability of Continual Learning [25.480762565632332]
本稿では,新しいタスクの学習プロセスで使用できる,単純なタスク固有のデータ中毒攻撃について述べる。
2つの代表的な正規化に基づく連続学習手法に対する攻撃実験を行った。
論文 参考訳(メタデータ) (2022-11-29T02:28:05Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
タスク間の関係を探索するために,タスクプレフィックスガイド付きマルチタスク事前学習フレームワークを提案する。
我々のモデルは、幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能である。
論文 参考訳(メタデータ) (2022-10-12T15:02:04Z) - An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
Multitask Learning Systems [4.675744559395732]
マルチタスク学習は、複数のタスクから学習できるモデルが知識伝達によってより良い品質と効率を達成すると仮定する。
最先端のMLモデルは、タスクごとに高いカスタマイズに依存し、タスクの数をスケールするのではなく、サイズとデータスケールを活用する。
本稿では,大規模マルチタスクモデルを生成でき,新しいタスクの動的かつ連続的な追加を支援する進化的手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T13:10:47Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - False Memory Formation in Continual Learners Through Imperceptible
Backdoor Trigger [3.3439097577935213]
連続的な(漸進的な)学習モデルに提示される新しい情報を逐次学習すること。
知的敵は、訓練中に、特定のタスクやクラスを意図的に忘れないように、少量の誤報をモデルに導入できることを示す。
筆者らは、一般的に使われている生成的リプレイと正規化に基づく連続学習アプローチに「バックドア」攻撃サンプルを注入することにより、モデルの制御を前提とする敵の能力を実証する。
論文 参考訳(メタデータ) (2022-02-09T14:21:13Z) - Learning Multiple Dense Prediction Tasks from Partially Annotated Data [41.821234589075445]
マルチタスク部分教師付き学習(multi-task part-supervised learning)と呼ぶ部分注釈付きデータ上で,複数の密接な予測タスクを共同で学習する。
本稿では,タスク関係を利用したマルチタスク学習手法を提案する。
提案手法は,既存の半教師付き学習手法や関連手法を3つの標準ベンチマークで上回り,非ラベルなタスクで効果的に活用できることを厳密に実証する。
論文 参考訳(メタデータ) (2021-11-29T19:03:12Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
マルチタスク学習は、あるタスクによって学習された情報を活用して、他のタスクのトレーニングに役立てることができる。
マルチタスク学習モデルにおいて、どのタスクを一緒にトレーニングすべきかを選択するアプローチを提案する。
本手法は,全タスクを協調学習し,タスクの勾配が他のタスクの損失に影響を及ぼす影響を定量化する。
論文 参考訳(メタデータ) (2021-09-10T02:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。