論文の概要: Physiological Data: Challenges for Privacy and Ethics
- arxiv url: http://arxiv.org/abs/2405.15272v1
- Date: Fri, 24 May 2024 06:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:50:32.695525
- Title: Physiological Data: Challenges for Privacy and Ethics
- Title(参考訳): 生理データ:プライバシーと倫理への挑戦
- Authors: Keith Davis, Tuukka Ruotsalo,
- Abstract要約: 現在利用可能な技術がどのように悪用されるかを特定します。
生理的データを非生理的データと組み合わせることで、生理的ウェアラブルの予測能力を根本的に拡張する方法について論じる。
- 参考スコア(独自算出の注目度): 5.806508960700344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wearable devices that measure and record physiological signals are now becoming widely available to the general public with ever-increasing affordability and signal quality. The data from these devices introduce serious ethical challenges that remain largely unaddressed. Users do not always understand how these data can be leveraged to reveal private information about them and developers of these devices may not fully grasp how physiological data collected today could be used in the future for completely different purposes. We discuss the potential for wearable devices, initially designed to help users improve their well-being or enhance the experience of some digital application, to be appropriated in ways that extend far beyond their original intended purpose. We identify how the currently available technology can be misused, discuss how pairing physiological data with non-physiological data can radically expand the predictive capacity of physiological wearables, and explore the implications of these expanded capacities for a variety of stakeholders.
- Abstract(参考訳): 生理的信号を計測し記録するウェアラブルデバイスは、現在一般大衆に広く普及しており、手頃な価格と信号の品質が増している。
これらのデバイスから得られたデータには深刻な倫理的課題が伴う。
ユーザーは、これらのデータをどのように活用してプライベートな情報を明らかにすることができるのかを常に理解していないし、これらのデバイスの開発者は、現在収集されている生理的データが、完全に異なる目的のためにどのように使われるかを完全に理解していないかもしれない。
ウェアラブルデバイスの可能性について論じる。このデバイスは,ユーザの幸福感の向上や,デジタルアプリケーションのエクスペリエンス向上を支援するために設計されたものだ。
現在利用可能な技術がどのように誤用されるかを特定し、生理的データと非生理的データを組み合わせることで、生理的ウェアラブルの予測能力を根本的に拡張し、これらの拡張能力が様々な利害関係者にもたらす影響について検討する。
関連論文リスト
- Transforming Wearable Data into Health Insights using Large Language Model Agents [25.92023580781527]
本稿では,ウェアラブルの行動保健データを分析・解釈するエージェントシステムであるPersonal Health Insights Agent(PHIA)を紹介する。
650時間の人間と専門家による評価に基づいて、PHIAは事実の数値的な質問の84%以上と、クラウドソーシングされたオープンエンドな質問の83%以上に正確に対処することができる。
論文 参考訳(メタデータ) (2024-06-10T17:00:54Z) - Model-Agnostic Utility-Preserving Biometric Information Anonymization [9.413512346732768]
近年のセンサ技術と機械学習技術の急速な進歩は、人々のバイオメトリックスの普遍的な収集と利用を引き起こしている。
生体認証の利用は、本質的なセンシティブな性質と、センシティブな情報を漏洩するリスクが高いため、深刻なプライバシー上の懸念を引き起こしている。
本稿では,生体データに対して,その感度特性を抑え,下流機械学習による解析に関連のある特徴を保持することで,生体データを匿名化できる新しいモダリティ非依存型データ変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T21:21:40Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic Data in Healthcare [10.555189948915492]
本稿では,データ作成のための物理・統計シミュレーションの事例と医療・医療への応用について述べる。
人工物は、プライバシ、エクイティ、安全性、継続的な、因果学習を促進することができるが、欠陥や盲点を導入し、バイアスを伝播または誇張するリスクも負う。
論文 参考訳(メタデータ) (2023-04-06T17:23:39Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
低次元の埋め込み空間は、健康指標、ライフスタイル、および人口動態の予測をデータスカース化するために、英国バイオバンクの人口データセットから導出することができる。
半超越的アプローチによるパフォーマンス向上は、おそらく様々な医学データサイエンス応用にとって重要な要素となるだろう。
論文 参考訳(メタデータ) (2021-10-12T16:25:50Z) - A Systematic Literature Review on Wearable Health Data Publishing under
Differential Privacy [2.099922236065961]
ウェアラブルデバイスは、個人に関するさまざまな種類の生理的データを生成する。
差別化プライバシ(DP)は、プライバシに敏感なデータをパブリッシュするための熟練したテクニックとして登場した。
論文 参考訳(メタデータ) (2021-09-15T14:43:00Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z) - The Future of Digital Health with Federated Learning [15.45906320465105]
データ駆動機械学習は、医療データから正確で堅牢な統計モデルを構築するための有望なアプローチとして登場した。
既存の医療データは、主にデータサイロに置かれており、プライバシの懸念によってデータへのアクセスが制限されているため、MLによって完全に利用されていない。
本稿では、フェデレートラーニングがデジタルヘルスの未来にどのように解決策をもたらすかを考察し、対処すべき課題と考察を強調する。
論文 参考訳(メタデータ) (2020-03-18T09:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。