論文の概要: MindShot: Brain Decoding Framework Using Only One Image
- arxiv url: http://arxiv.org/abs/2405.15278v1
- Date: Fri, 24 May 2024 07:07:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:50:32.685151
- Title: MindShot: Brain Decoding Framework Using Only One Image
- Title(参考訳): MindShot: たった1つのイメージで脳をデコードするフレームワーク
- Authors: Shuai Jiang, Zhu Meng, Delong Liu, Haiwen Li, Fei Su, Zhicheng Zhao,
- Abstract要約: MindShotは、クロスオブジェクトの事前知識を活用することで、効果的に数発のブレインデコーディングを実現するために提案されている。
新しい被験者と事前訓練された個人は、同じ意味クラスのイメージのみを見る必要があり、モデルの適用性を大幅に拡大する。
- 参考スコア(独自算出の注目度): 21.53687547774089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain decoding, which aims at reconstructing visual stimuli from brain signals, primarily utilizing functional magnetic resonance imaging (fMRI), has recently made positive progress. However, it is impeded by significant challenges such as the difficulty of acquiring fMRI-image pairs and the variability of individuals, etc. Most methods have to adopt the per-subject-per-model paradigm, greatly limiting their applications. To alleviate this problem, we introduce a new and meaningful task, few-shot brain decoding, while it will face two inherent difficulties: 1) the scarcity of fMRI-image pairs and the noisy signals can easily lead to overfitting; 2) the inadequate guidance complicates the training of a robust encoder. Therefore, a novel framework named MindShot, is proposed to achieve effective few-shot brain decoding by leveraging cross-subject prior knowledge. Firstly, inspired by the hemodynamic response function (HRF), the HRF adapter is applied to eliminate unexplainable cognitive differences between subjects with small trainable parameters. Secondly, a Fourier-based cross-subject supervision method is presented to extract additional high-level and low-level biological guidance information from signals of other subjects. Under the MindShot, new subjects and pretrained individuals only need to view images of the same semantic class, significantly expanding the model's applicability. Experimental results demonstrate MindShot's ability of reconstructing semantically faithful images in few-shot scenarios and outperforms methods based on the per-subject-per-model paradigm. The promising results of the proposed method not only validate the feasibility of few-shot brain decoding but also provide the possibility for the learning of large models under the condition of reducing data dependence.
- Abstract(参考訳): 機能的磁気共鳴画像(fMRI)を利用した脳信号からの視覚刺激の再構築を目的とした脳復号法は,近年,肯定的な進歩を遂げている。
しかし、fMRI画像対取得の難しさや個人の多様性など、重大な課題に悩まされている。
ほとんどのメソッドは、オブジェクトごとのモデルパラダイムを採用しなければならず、アプリケーションを大幅に制限します。
この問題を軽減するために、我々は新しい意味のあるタスク、数発のブレイン・デコードを導入します。
1) fMRI画像対と雑音信号の不足は、容易に過度な適合につながる。
2 不適切な指導は、堅牢なエンコーダの訓練を複雑にする。
そこで,MindShotという新しいフレームワークが提案されている。
まず, 血行動態応答関数 (HRF) にインスパイアされたHRFアダプタを用いて, トレーニング可能なパラメータの少ない被験者間での, 説明不能な認知的差異を解消する。
次に、他の被験者の信号から高レベル・低レベルの生物学的ガイダンス情報を抽出するために、フーリエを用いたクロスオブジェクト監視手法を提案する。
MindShotの下では、新しい被験者と事前訓練された個人は、同じセマンティッククラスのイメージのみを見る必要があり、モデルの適用性を大幅に拡大する。
実験により、MindShotは、オブジェクトごとのモデルパラダイムに基づいて、少数のシナリオで意味的に忠実なイメージを再構成し、メソッドを性能良くする能力を示した。
提案手法の有望な結果は,数発のブレインデコーディングの実現可能性だけでなく,データ依存の低減条件下での大規模モデルの学習の可能性も示唆している。
関連論文リスト
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Decoding Realistic Images from Brain Activity with Contrastive
Self-supervision and Latent Diffusion [29.335943994256052]
ヒトの脳活動から視覚刺激を再構築することは、脳の視覚系を理解する上で有望な機会となる。
機能的磁気共鳴イメージング(fMRI)記録から現実的な画像をデコードする2相フレームワークContrast and Diffuse(CnD)を提案する。
論文 参考訳(メタデータ) (2023-09-30T09:15:22Z) - MindDiffuser: Controlled Image Reconstruction from Human Brain Activity
with Semantic and Structural Diffusion [7.597218661195779]
我々はMindDiffuserと呼ばれる2段階の画像再構成モデルを提案する。
ステージ1では、VQ-VAE潜在表現とfMRIからデコードされたCLIPテキスト埋め込みが安定拡散される。
ステージ2では、fMRIからデコードされたCLIP視覚特徴を監視情報として利用し、バックパゲーションによりステージ1でデコードされた2つの特徴ベクトルを継続的に調整し、構造情報を整列させる。
論文 参考訳(メタデータ) (2023-08-08T13:28:34Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
2相fMRI表現学習フレームワークを提案する。
第1フェーズでは、double-contrastive Mask Auto-encoderを提案してfMRI機能学習者を事前訓練し、識別表現を学習する。
第2フェーズでは、イメージオートエンコーダからのガイダンスで視覚的再構成に最も有用な神経活性化パターンに参加するように、特徴学習者に調整する。
論文 参考訳(メタデータ) (2023-05-26T19:16:23Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIPはタスクに依存しないfMRIベースの脳復号モデルである。
脳の活動、画像、およびテキストの間のモダリティギャップを埋める。
BrainCLIPは、高い意味的忠実度で視覚刺激を再構築することができる。
論文 参考訳(メタデータ) (2023-02-25T03:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。