論文の概要: 3D Unsupervised Learning by Distilling 2D Open-Vocabulary Segmentation Models for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2405.15286v1
- Date: Fri, 24 May 2024 07:18:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:40:48.456964
- Title: 3D Unsupervised Learning by Distilling 2D Open-Vocabulary Segmentation Models for Autonomous Driving
- Title(参考訳): 自律運転のための2次元オープン語彙セグメントモデルの蒸留による3次元教師なし学習
- Authors: Boyi Sun, Yuhang Liu, Xingxia Wang, Bin Tian, Long Chen, Fei-Yue Wang,
- Abstract要約: 2次元開語彙セグメンテーションモデルを用いた新しい3次元教師なしフレームワークUOVを提案する。
最初の段階では、2次元オープン語彙モデルの高品質なテキストと画像の特徴を革新的に統合する。
第2段階では、点雲と画像の間の空間マッピングを利用して擬似ラベルを生成する。
- 参考スコア(独自算出の注目度): 17.42913935045091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud data labeling is considered a time-consuming and expensive task in autonomous driving, whereas unsupervised learning can avoid it by learning point cloud representations from unannotated data. In this paper, we propose UOV, a novel 3D Unsupervised framework assisted by 2D Open-Vocabulary segmentation models. It consists of two stages: In the first stage, we innovatively integrate high-quality textual and image features of 2D open-vocabulary models and propose the Tri-Modal contrastive Pre-training (TMP). In the second stage, spatial mapping between point clouds and images is utilized to generate pseudo-labels, enabling cross-modal knowledge distillation. Besides, we introduce the Approximate Flat Interaction (AFI) to address the noise during alignment and label confusion. To validate the superiority of UOV, extensive experiments are conducted on multiple related datasets. We achieved a record-breaking 47.73% mIoU on the annotation-free point cloud segmentation task in nuScenes, surpassing the previous best model by 10.70% mIoU. Meanwhile, the performance of fine-tuning with 1% data on nuScenes and SemanticKITTI reached a remarkable 51.75% mIoU and 48.14% mIoU, outperforming all previous pre-trained models.
- Abstract(参考訳): ポイントクラウドデータラベリングは、自律運転における時間とコストのかかるタスクであると考えられており、教師なし学習は、注釈のないデータからポイントクラウド表現を学習することでそれを避けることができる。
本稿では,2次元オープンボキャブラリセグメンテーションモデルを用いた新しい3次元アン教師付きフレームワークUOVを提案する。
第一段階では、2次元オープン語彙モデルの高品質なテキストと画像の特徴を革新的に統合し、TMP(Tri-Modal contrastive Pre-training)を提案する。
第2段階では、点雲と画像の間の空間マッピングを利用して擬似ラベルを生成し、クロスモーダルな知識蒸留を可能にする。
さらに,アライメント中のノイズやラベルの混乱に対処するため,AFI(Adroximate Flat Interaction)を導入する。
UOVの優位性を検証するために、複数の関連するデータセットに対して広範な実験を行った。
我々は,nuScenesにおけるアノテーションフリーのクラウドセグメンテーションタスクにおいて,47.73%のmIoUを記録破りに達成し,従来最高の10.70%のmIoUを上回りました。
一方、nuScenesとSemanticKITTIの1%のデータによる微調整のパフォーマンスは、51.75% mIoUと48.14% mIoUに到達し、以前のすべての事前訓練モデルを上回った。
関連論文リスト
- 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
我々は,LiDARとカメラのペアを連続的に利用して事前学習の目的を確立するための,新しいフレームワークであるSuperFlowを紹介する。
学習効率をさらに向上するため,カメラビューから抽出した知識の整合性を高めるプラグイン・アンド・プレイ・ビュー・一貫性モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-07-08T17:59:54Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Segment Any Point Cloud Sequences by Distilling Vision Foundation Models [55.12618600523729]
Sealは、さまざまな自動車のポイントクラウドシーケンスをセグメント化するためのビジョンファウンデーションモデル(VFM)を利用するフレームワークである。
Sealはスケーラビリティ、一貫性、一般化性という3つの魅力的な特性を示している。
論文 参考訳(メタデータ) (2023-06-15T17:59:54Z) - Point2Vec for Self-Supervised Representation Learning on Point Clouds [66.53955515020053]
Data2vecをポイントクラウド領域に拡張し、いくつかのダウンストリームタスクで推奨される結果を報告します。
我々は、ポイントクラウド上でData2vecライクな事前トレーニングの可能性を解放するpoint2vecを提案する。
論文 参考訳(メタデータ) (2023-03-29T10:08:29Z) - PointVST: Self-Supervised Pre-training for 3D Point Clouds via
View-Specific Point-to-Image Translation [64.858505571083]
本稿では,翻訳型事前学習フレームワークであるPointVSTを提案する。
3Dポイントクラウドからそれに対応する多様な2Dレンダリング画像へのクロスモーダル変換という,新たな教師付きプレテキストタスクによって駆動される。
論文 参考訳(メタデータ) (2022-12-29T07:03:29Z) - 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images [128.40422211090078]
本稿では,2次元表現学習モデルから直接知識を取得するために,3次元ポイントクラウド事前学習モデルの知識蒸留手法を提案する。
具体的には、3Dポイントクラウドから概念特徴を抽出し、2D画像からの意味情報と比較するクロスアテンション機構を提案する。
このスキームでは,2次元教師モデルに含まれるリッチな情報から,クラウド事前学習モデルを直接学習する。
論文 参考訳(メタデータ) (2022-12-17T23:21:04Z) - Efficient Urban-scale Point Clouds Segmentation with BEV Projection [0.0]
ほとんどのディープポイントクラウドモデルは、直接3Dポイントクラウド上で学習を行います。
本稿では,高密度の鳥眼視射影に3次元点雲を移すことを提案する。
論文 参考訳(メタデータ) (2021-09-19T06:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。