Transparent Object Depth Completion
- URL: http://arxiv.org/abs/2405.15299v1
- Date: Fri, 24 May 2024 07:38:06 GMT
- Title: Transparent Object Depth Completion
- Authors: Yifan Zhou, Wanli Peng, Zhongyu Yang, He Liu, Yi Sun,
- Abstract summary: The perception of transparent objects for grasp and manipulation remains a major challenge.
Existing robotic grasp methods which heavily rely on depth maps are not suitable for transparent objects due to their unique visual properties.
We propose an end-to-end network for transparent object depth completion that combines the strengths of single-view RGB-D based depth completion and multi-view depth estimation.
- Score: 11.825680661429825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The perception of transparent objects for grasp and manipulation remains a major challenge, because existing robotic grasp methods which heavily rely on depth maps are not suitable for transparent objects due to their unique visual properties. These properties lead to gaps and inaccuracies in the depth maps of the transparent objects captured by depth sensors. To address this issue, we propose an end-to-end network for transparent object depth completion that combines the strengths of single-view RGB-D based depth completion and multi-view depth estimation. Moreover, we introduce a depth refinement module based on confidence estimation to fuse predicted depth maps from single-view and multi-view modules, which further refines the restored depth map. The extensive experiments on the ClearPose and TransCG datasets demonstrate that our method achieves superior accuracy and robustness in complex scenarios with significant occlusion compared to the state-of-the-art methods.
Related papers
- Depth-guided Texture Diffusion for Image Semantic Segmentation [47.46257473475867]
We introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge.
Our method extracts low-level features from edges and textures to create a texture image.
By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image.
arXiv Detail & Related papers (2024-08-17T04:55:03Z) - OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
arXiv Detail & Related papers (2024-07-15T14:29:15Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Unveiling the Depths: A Multi-Modal Fusion Framework for Challenging
Scenarios [103.72094710263656]
This paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework.
We propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas.
With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner.
arXiv Detail & Related papers (2024-02-19T04:39:16Z) - RGB-Depth Fusion GAN for Indoor Depth Completion [29.938869342958125]
In this paper, we design a novel two-branch end-to-end fusion network, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map.
In one branch, we propose an RGB-depth fusion GAN to transfer the RGB image to the fine-grained textured depth map.
In the other branch, we adopt adaptive fusion modules named W-AdaIN to propagate the features across the two branches.
arXiv Detail & Related papers (2022-03-21T10:26:38Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - TransCG: A Large-Scale Real-World Dataset for Transparent Object Depth
Completion and Grasping [46.6058840385155]
We contribute a large-scale real-world dataset for transparent object depth completion.
Our dataset contains 57,715 RGB-D images from 130 different scenes.
We propose an end-to-end depth completion network, which takes the RGB image and the inaccurate depth map as inputs and outputs a refined depth map.
arXiv Detail & Related papers (2022-02-17T06:50:20Z) - Self-Guided Instance-Aware Network for Depth Completion and Enhancement [6.319531161477912]
Existing methods directly interpolate the missing depth measurements based on pixel-wise image content and the corresponding neighboring depth values.
We propose a novel self-guided instance-aware network (SG-IANet) that utilize self-guided mechanism to extract instance-level features that is needed for depth restoration.
arXiv Detail & Related papers (2021-05-25T19:41:38Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.