論文の概要: Output-Constrained Decision Trees
- arxiv url: http://arxiv.org/abs/2405.15314v3
- Date: Mon, 09 Jun 2025 08:25:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 01:40:32.470932
- Title: Output-Constrained Decision Trees
- Title(参考訳): 出力制約された決定木
- Authors: Hüseyin Tunç, Doğanay Özese, Ş. İlker Birbil, Donato Maragno, Marco Caserta, Mustafa Baydoğan,
- Abstract要約: 本稿では,OCRT(Output-Constrained Regression Trees)の学習方法を紹介する。
制約を強制するために分割型混合整数プログラミングを使用する M-OCRT と、最適分割を徹底的に探索し、各決定ノードにおける制約付き予測問題を解く E-OCRT と、ポストホック制約付き最適化を木予測に適用する EP-OCRT の3つのアプローチを提案する。
以上の結果から,決定木学習に制約を加えることで,正確かつ実現可能な予測が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating domain-specific constraints into machine learning models is essential for generating predictions that are both accurate and feasible in real-world applications. This paper introduces new methods for training Output-Constrained Regression Trees (OCRT), addressing the limitations of traditional decision trees in constrained multi-target regression tasks. We propose three approaches: M-OCRT, which uses split-based mixed integer programming to enforce constraints; E-OCRT, which employs an exhaustive search for optimal splits and solves constrained prediction problems at each decision node; and EP-OCRT, which applies post-hoc constrained optimization to tree predictions. To illustrate their potential uses in ensemble learning, we also introduce a random forest framework working under convex feasible sets. We validate the proposed methods through a computational study both on synthetic and industry-driven hierarchical time series datasets. Our results demonstrate that imposing constraints on decision tree training results in accurate and feasible predictions.
- Abstract(参考訳): 機械学習モデルにドメイン固有の制約を組み込むことは、現実のアプリケーションで正確かつ実現可能な予測を生成する上で不可欠である。
本稿では,制約付きマルチターゲット回帰タスクにおける従来の決定木の制約に対処する,出力制約回帰木(OCRT)の学習手法を提案する。
制約を強制するために分割型混合整数プログラミングを使用する M-OCRT と、最適分割を徹底的に探索し、各決定ノードにおける制約付き予測問題を解く E-OCRT と、ポストホック制約付き最適化を木予測に適用する EP-OCRT の3つのアプローチを提案する。
アンサンブル学習におけるそれらの可能性を示すために、凸可能な集合の下で動くランダムな森林フレームワークも導入する。
提案手法は,合成および産業主導型階層時系列データセットの計算的研究により検証する。
以上の結果から,決定木学習に制約を加えることで,正確かつ実現可能な予測が可能であることが示唆された。
関連論文リスト
- Multi-Objective Causal Bayesian Optimization [2.5311562666866494]
マルチターゲット因果グラフ内の最適介入を特定するために,MO-CBO(Multi-Objective Causal Bayesian Optimization)を提案する。
我々はMO-CBOを複数の従来の多目的最適化タスクに分解可能であることを示す。
提案手法は,合成と実世界の因果グラフの両方で検証する。
論文 参考訳(メタデータ) (2025-02-20T17:26:16Z) - Controllable Preference Optimization: Toward Controllable Multi-Objective Alignment [103.12563033438715]
人工知能におけるアライメントは、モデル応答と人間の好みと値の一貫性を追求する。
既存のアライメント技術は、主に一方向であり、様々な目的に対して、最適以下のトレードオフと柔軟性の低下につながる。
制御可能な選好最適化(CPO)を導入し、異なる目的に対する選好スコアを明確に指定する。
論文 参考訳(メタデータ) (2024-02-29T12:12:30Z) - Deep Neural Network Benchmarks for Selective Classification [27.098996474946446]
複数の選択的な分類フレームワークが存在し、その多くはディープニューラルネットワークアーキテクチャに依存している。
提案手法は,選択誤差率,経験的カバレッジ,拒否されたインスタンスのクラス分布,アウト・オブ・ディストリビューション・インスタンスの性能など,いくつかの基準を用いて評価する。
論文 参考訳(メタデータ) (2024-01-23T12:15:47Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
対象の選択が個人の結果にどのように影響するかを評価するための概念的および計算的枠組みを導入する。
目的変数選択から生じる多重度は, 1つのターゲットのほぼ最適モデルから生じるものよりも大きいことが示される。
論文 参考訳(メタデータ) (2023-06-23T18:57:14Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Multi-Target Decision Making under Conditions of Severe Uncertainty [0.0]
不完全な優先的・確率的な情報をいかに利用して、異なる目標間の意思決定を比較するかを示す。
本稿では,提案する決定オプション間の順序の興味深い性質について論じ,線形最適化によって具体的な計算方法を示す。
本論文は,アルゴリズムを異なる性能尺度で比較する文脈において,我々のフレームワークを実証することによって,論文を締めくくっている。
論文 参考訳(メタデータ) (2022-12-13T11:47:02Z) - Policy learning for many outcomes of interest: Combining optimal policy
trees with multi-objective Bayesian optimisation [0.0]
多目的政策学習は、ポリシー学習のための最適な決定木と、多目的ベイズ最適化アプローチを組み合わせる。
本手法はケニアにおける抗マラリア薬の非価格設定の現実世界のケーススタディに適用される。
論文 参考訳(メタデータ) (2022-12-13T01:39:14Z) - Generative multitask learning mitigates target-causing confounding [61.21582323566118]
マルチタスク学習のための因果表現学習のためのシンプルでスケーラブルなアプローチを提案する。
改善は、目標を狙うが入力はしない、観測されていない共同ファウンダーを緩和することによる。
人の属性とタスクノミーのデータセットに対する我々の結果は、事前の確率シフトに対するロバストネスの概念的改善を反映している。
論文 参考訳(メタデータ) (2022-02-08T20:42:14Z) - Robust Optimal Classification Trees Against Adversarial Examples [5.254093731341154]
本稿では,ユーザが特定した攻撃モデルに対して最適に堅牢な決定木を訓練する手法の集合を提案する。
逆学習において生じるmin-max最適化問題は、単一最小化定式化を用いて解くことができることを示す。
また,両部マッチングを用いた任意のモデルに対して,上界の対角精度を決定する手法を提案する。
論文 参考訳(メタデータ) (2021-09-08T18:10:49Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
そこで本研究では,目標予測能力に基づいて参照の関連性を測定し,その関連性を高めるための新しい予測器組合せアルゴリズムを提案する。
提案アルゴリズムはベイズフレームワークを用いて,すべての参照の関連性について共同で評価する。
視覚属性ランキングとマルチクラス分類シナリオから得られた実世界の7つのデータセットの実験に基づいて,本アルゴリズムが性能向上に寄与し,既存の予測器の組み合わせアプローチの適用範囲を広くすることを示した。
論文 参考訳(メタデータ) (2020-07-15T21:58:39Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
様々な目的に対して最適な決定木を生成する手法を提案する。
また,連続変数が存在する場合に最適な結果が得られるスケーラブルなアルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-06-15T19:00:11Z) - Multivariate Boosted Trees and Applications to Forecasting and Control [0.0]
勾配強化木は、特定の損失関数を最小限に抑えるために、逐次モデルフィッティングと勾配降下を利用する非パラメトリック回帰木である。
本稿では,多変量隆起木を適応する計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-08T19:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。