論文の概要: Decaf: Data Distribution Decompose Attack against Federated Learning
- arxiv url: http://arxiv.org/abs/2405.15316v1
- Date: Fri, 24 May 2024 07:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:31:04.201216
- Title: Decaf: Data Distribution Decompose Attack against Federated Learning
- Title(参考訳): 障害: データ分散はフェデレーション学習に対する攻撃を分解する
- Authors: Zhiyang Dai, Chunyi Zhou, Anmin Fu,
- Abstract要約: FLにおけるデータ分散分解攻撃(Data Distribution Decompose Attack on FL)という,革新的なプライバシの脅威を考案しています。
Decafはひそかに運営しており、データ配信のプライバシーの侵害に関して、完全に受動的で、被害者のユーザーには検出できない。
結果から,IID,非IIDのいずれであっても,ローカルなデータ分散を正確に分解できることを示す。
- 参考スコア(独自算出の注目度): 4.3667223256713745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to prevalent Federated Learning (FL) privacy inference techniques such as generative adversarial networks attacks, membership inference attacks, property inference attacks, and model inversion attacks, we devise an innovative privacy threat: the Data Distribution Decompose Attack on FL, termed Decaf. This attack enables an honest-but-curious FL server to meticulously profile the proportion of each class owned by the victim FL user, divulging sensitive information like local market item distribution and business competitiveness. The crux of Decaf lies in the profound observation that the magnitude of local model gradient changes closely mirrors the underlying data distribution, including the proportion of each class. Decaf addresses two crucial challenges: accurately identify the missing/null class(es) given by any victim user as a premise and then quantify the precise relationship between gradient changes and each remaining non-null class. Notably, Decaf operates stealthily, rendering it entirely passive and undetectable to victim users regarding the infringement of their data distribution privacy. Experimental validation on five benchmark datasets (MNIST, FASHION-MNIST, CIFAR-10, FER-2013, and SkinCancer) employing diverse model architectures, including customized convolutional networks, standardized VGG16, and ResNet18, demonstrates Decaf's efficacy. Results indicate its ability to accurately decompose local user data distribution, regardless of whether it is IID or non-IID distributed. Specifically, the dissimilarity measured using $L_{\infty}$ distance between the distribution decomposed by Decaf and ground truth is consistently below 5\% when no null classes exist. Moreover, Decaf achieves 100\% accuracy in determining any victim user's null classes, validated through formal proof.
- Abstract(参考訳): 生成的敵ネットワーク攻撃、メンバシップ推論攻撃、プロパティ推論攻撃、モデルインバージョン攻撃など、一般的なFL(Federated Learning)プライバシ推論技術とは対照的に、我々は革新的なプライバシの脅威、すなわちデータ分散分解攻撃(Data Distribution Decompose Attack on FL)を考案した。
この攻撃により、真面目だが真面目なFLサーバは、被害者FLユーザーが所有する各クラスの割合を慎重にプロファイリングし、ローカル市場アイテムの分布やビジネス競争性などのセンシティブな情報を拡散することができる。
ディカフのくぼみは、局所的なモデル勾配の大きさが、各クラスの比率を含む基礎となるデータ分布を密接に反映しているという深い観察にある。
Decafは2つの重要な課題に対処する: 犠牲者が与える欠落/無効なクラスを前提として正確に識別し、勾配変化と残りの各非nullクラスの間の正確な関係を定量化する。
とくにDecafは、ひそかに運用しており、データ配布のプライバシーの侵害に関して、完全に受動的で、被害者のユーザには検出不可能だ。
5つのベンチマークデータセット(MNIST、FASHION-MNIST、CIFAR-10、FER-2013、SkinCancer)の検証では、カスタマイズされた畳み込みネットワーク、標準化されたVGG16、ResNet18など、さまざまなモデルアーキテクチャが採用されている。
結果から,IID,非IIDのいずれであっても,ローカルなデータ分散を正確に分解できることを示す。
具体的には、Deafによって分解された分布と基底真理の間の$L_{\infty}$距離を用いて測定される相似性は、ヌル類が存在しない場合、一貫して5\%以下である。
さらに、Decafは、正式な証明によって検証された任意の犠牲者のnullクラスを決定する際に、100\%の精度を達成する。
関連論文リスト
- Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
フェデレート・ラーニング(FL)システムは悪意のあるアクターからの攻撃を受けやすい。
FLは、異なる人口集団の公正なパフォーマンスを保証するなど、グループの偏見に対処する上で、新たな課題を提起する。
このようなバイアスに対処するために使用される従来の方法は、FLシステムが持っていないデータへの集中的なアクセスを必要とする。
我々は、クライアントからの追加情報を必要としない堅牢性と公正性の両方に対して、新しいアプローチであるFedValを提案する。
論文 参考訳(メタデータ) (2023-06-06T22:11:13Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、学習モデルにおけるプライバシの問題に対処するように設計されている。
新しい分散パラダイムは、データのプライバシを保護するが、サーバがローカルデータセットにアクセスできないため、攻撃面を区別する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - Securing Federated Learning against Overwhelming Collusive Attackers [7.587927338603662]
局所モデル間の相関を利用して,最小スパンニング木とk-Densestグラフに基づく2つのグラフ理論アルゴリズムを提案する。
我々のFLモデルは、攻撃者の影響を最大70%まで無効にすることができる。
我々は、精度、攻撃成功率、早期検出ラウンドを用いて、既存のアルゴリズムよりもアルゴリズムの優位性を確立する。
論文 参考訳(メタデータ) (2022-09-28T13:41:04Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。