論文の概要: Multi-Modal Recommendation Unlearning
- arxiv url: http://arxiv.org/abs/2405.15328v1
- Date: Fri, 24 May 2024 08:11:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 15:21:18.325904
- Title: Multi-Modal Recommendation Unlearning
- Title(参考訳): マルチモーダル・レコメンデーション・アンラーニング
- Authors: Yash Sinha, Murari Mandal, Mohan Kankanhalli,
- Abstract要約: 本稿ではマルチモーダル・レコメンデーション・アンラーニングのための新しいフレームワークであるMMRecUNを紹介する。
トレーニングされたレコメンデーションモデルとマーク付き忘れデータから、Reverse Bayesian Personalized Ranking(BPR)の目標を考案し、モデルを忘れるように強制する。
MMRecUNはベースライン方式と比較して最大$mathbf49.85%のリコール性能の向上を実現している。
- 参考スコア(独自算出の注目度): 10.335361310419826
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unlearning methods for recommender systems (RS) have emerged to address privacy issues and concerns about legal compliance. However, evolving user preferences and content licensing issues still remain unaddressed. This is particularly true in case of multi-modal recommender systems (MMRS), which aim to accommodate the growing influence of multi-modal information on user preferences. Previous unlearning methods for RS are inapplicable to MMRS due to incompatibility of multi-modal user-item behavior data graph with the matrix based representation of RS. Partitioning based methods degrade recommendation performance and incur significant overhead costs during aggregation. This paper introduces MMRecUN, a new framework for multi-modal recommendation unlearning, which, to the best of our knowledge, is the first attempt in this direction. Given the trained recommendation model and marked forget data, we devise Reverse Bayesian Personalized Ranking (BPR) objective to force the model to forget it. MMRecUN employs both reverse and forward BPR loss mechanisms to selectively attenuate the impact of interactions within the forget set while concurrently reinforcing the significance of interactions within the retain set. Our experiments demonstrate that MMRecUN outperforms baseline methods across various unlearning requests when evaluated on benchmark multi-modal recommender datasets. MMRecUN achieves recall performance improvements of up to $\mathbf{49.85%}$ compared to the baseline methods. It is up to $\mathbf{1.3}\times$ faster than the \textsc{Gold} model, which is trained on retain data from scratch. MMRecUN offers advantages such as superior performance in removing target elements, preservation of performance for retained elements, and zero overhead costs in comparison to previous methods.
- Abstract(参考訳): 法律遵守に関するプライバシー問題や懸念に対処するために、レコメンデーターシステム(RS)の未学習手法が出現している。
しかし、ユーザー好みの進化とコンテンツライセンスの問題はまだ未解決のままだ。
特にマルチモーダル・レコメンデータ・システム(MMRS)では,ユーザの嗜好に対するマルチモーダル情報の影響が増大する傾向にある。
マルチモーダルなユーザ・イテム行動データグラフとRSの行列ベース表現との非互換性のため,従来の未学習手法はMMRSには適用できない。
分割ベースのメソッドは、レコメンデーションパフォーマンスを低下させ、アグリゲーション中にかなりのオーバーヘッドコストを発生させる。
本稿では,マルチモーダル・レコメンデーション・アンラーニングのための新しいフレームワークであるMMRecUNを紹介する。
トレーニングされたレコメンデーションモデルとマーク付き忘れデータから、Reverse Bayesian Personalized Ranking(BPR)の目標を考案し、モデルを忘れるように強制する。
MMRecUNは逆と前方の両方のBPR損失機構を用いて、リザーブセット内の相互作用の影響を選択的に減らし、レザーブセット内の相互作用の重要性を同時に補強する。
MMRecUNは、ベンチマークマルチモーダルレコメンデータデータセットで評価した場合、様々な未学習要求に対してベースライン手法よりも優れていることを示す。
MMRecUNは、ベースラインメソッドと比較して最大$\mathbf{49.85%}$のリコールパフォーマンスの改善を実現している。
最大$\mathbf{1.3}\times$は、データをスクラッチから保持するようにトレーニングされた \textsc{Gold} モデルよりも高速である。
MMRecUNは、ターゲット要素の除去における優れたパフォーマンス、保持された要素のパフォーマンスの保存、以前の方法と比較してオーバーヘッドコストのゼロといった利点を提供する。
関連論文リスト
- Preference Diffusion for Recommendation [50.8692409346126]
DMベースのレコメンデータに適した最適化対象であるPreferDiffを提案する。
PreferDiffは、BPRをログライクなランキング目標に変換することで、ユーザの好みをよりよく把握する。
これはDMベースのレコメンデーション向けに特別に設計された、パーソナライズされたランキングの損失である。
論文 参考訳(メタデータ) (2024-10-17T01:02:04Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
シークエンシャルレコメンデーション(SR:Sequential Recommendation)は、非定常的な歴史的相互作用に基づいてユーザの好みに合わせてレコメンデーションを調整することによって、レコメンデーションシステムにおいて重要な役割を担っている。
誘導抽出モジュール(GEM)と生成拡散凝集モジュール(DAM)を組み合わせたDimeRecという新しいフレームワークを提案する。
我々の数値実験により、DimeRecは3つの公開データセットで確立されたベースライン法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-08-22T06:42:09Z) - Customizing Language Models with Instance-wise LoRA for Sequential Recommendation [28.667247613039965]
時系列レコメンデーションシステムは、ユーザの過去のインタラクションに基づいて次のインタラクション項目を予測し、個別の好みに合わせてレコメンデーションを調整する。
マルチタスク学習の一形態としてインスタンスワイドLoRA(iLoRA)を提案し、LoRAとMixture of Experts(MoE)フレームワークを統合する。
iLoRAは、トレーニング可能なパラメータの1%未満の相対的な増加で、基本的なLoRAよりも11.4%の平均的な相対的な改善を達成している。
論文 参考訳(メタデータ) (2024-08-19T17:09:32Z) - Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning [70.22819290458581]
人間のフィードバックによる強化学習(RLHF)は、現在の大規模言語モデルパイプラインにおいて広く採用されているアプローチである。
提案手法では,(1)OODを回避するためのオン・ポリシー・クエリと,(2)プライオリティ・クエリの最も情報性の高いデータを選択するためのアクティブ・ラーニングという2つの重要なイノベーションを導入している。
論文 参考訳(メタデータ) (2024-07-02T10:09:19Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
何百万というユーザの長いクエリは、大規模言語モデルのパフォーマンスを低下させ、推奨することができる。
本稿では,大規模言語モデルと従来のレコメンデーションシステムの両方の機能を利用するハイブリッドタスク割り当てフレームワークを提案する。
実世界の3つのデータセットによる結果から,弱い利用者の減少と,サブ人口に対するRSのロバスト性の向上が示唆された。
論文 参考訳(メタデータ) (2024-05-01T19:11:47Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T08:02:18Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
本稿では,マルチゴールサンプリングとユーザ関連度(Sample-Rank)のランク付けによるマーケットプレースの多目的目標への推薦手法を提案する。
提案手法の新規性は,望まれるマルチゴール分布からサンプリングするMOレコメンデーション問題を低減し,プロダクションフレンドリーな学習-ランクモデルを構築することである。
論文 参考訳(メタデータ) (2020-08-24T09:17:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。