論文の概要: Preference Diffusion for Recommendation
- arxiv url: http://arxiv.org/abs/2410.13117v1
- Date: Thu, 17 Oct 2024 01:02:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:42.582715
- Title: Preference Diffusion for Recommendation
- Title(参考訳): レコメンデーションのための選好拡散
- Authors: Shuo Liu, An Zhang, Guoqing Hu, Hong Qian, Tat-seng Chua,
- Abstract要約: DMベースのレコメンデータに適した最適化対象であるPreferDiffを提案する。
PreferDiffは、BPRをログライクなランキング目標に変換することで、ユーザの好みをよりよく把握する。
これはDMベースのレコメンデーション向けに特別に設計された、パーソナライズされたランキングの損失である。
- 参考スコア(独自算出の注目度): 50.8692409346126
- License:
- Abstract: Recommender systems predict personalized item rankings based on user preference distributions derived from historical behavior data. Recently, diffusion models (DMs) have gained attention in recommendation for their ability to model complex distributions, yet current DM-based recommenders often rely on traditional objectives like mean squared error (MSE) or recommendation objectives, which are not optimized for personalized ranking tasks or fail to fully leverage DM's generative potential. To address this, we propose PreferDiff, a tailored optimization objective for DM-based recommenders. PreferDiff transforms BPR into a log-likelihood ranking objective and integrates multiple negative samples to better capture user preferences. Specifically, we employ variational inference to handle the intractability through minimizing the variational upper bound and replaces MSE with cosine error to improve alignment with recommendation tasks. Finally, we balance learning generation and preference to enhance the training stability of DMs. PreferDiff offers three key benefits: it is the first personalized ranking loss designed specifically for DM-based recommenders and it improves ranking and faster convergence by addressing hard negatives. We also prove that it is theoretically connected to Direct Preference Optimization which indicates that it has the potential to align user preferences in DM-based recommenders via generative modeling. Extensive experiments across three benchmarks validate its superior recommendation performance and commendable general sequential recommendation capabilities. Our codes are available at \url{https://github.com/lswhim/PreferDiff}.
- Abstract(参考訳): リコメンダシステムは、過去の行動データから導かれたユーザの好み分布に基づいて、パーソナライズされたアイテムランキングを予測する。
近年、拡散モデル(DM)は、複雑な分布をモデル化する能力に注目されているが、現在のDMベースの推奨者は、パーソナライズされたランキングタスクに最適化されていない平均二乗誤差(MSE)やレコメンデーション目標といった従来の目的に頼っていることが多い。
そこで本稿では,DMベースのレコメンデータのための最適化対象であるPreferDiffを提案する。
PreferDiffは、BPRをログライクなランキング目標に変換し、複数の負のサンプルを統合して、ユーザの好みをよりよく把握する。
具体的には,変分上限を最小化し,MSEをコサイン誤差で置き換えることで,提案課題との整合性を改善する。
最後に、DMの訓練安定性を高めるために学習生成と嗜好のバランスをとる。
PreferDiffは、DMベースのレコメンデーション向けに特別に設計された、パーソナライズされたランキングの損失であり、ハードネガティブに対処することで、ランキングとより高速なコンバージェンスを改善する。
また、DMベースのレコメンデーションモデルを用いて、利用者の好みを調整できる可能性を示すダイレクト・プライス・オプティマイゼーションと理論的に結びついていることも証明した。
3つのベンチマークにわたる大規模な実験は、その優れたレコメンデーション性能と賞賛可能な一般的なレコメンデーション能力を検証する。
私たちのコードは \url{https://github.com/lswhim/PreferDiff} で利用可能です。
関連論文リスト
- Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
我々は、NDCGを異なる代理損失で近似することで、エンドツーエンドの選好最適化アルゴリズムを開発する。
OPOは、AlpacaEvalのような評価セットや一般的なベンチマークにおいて、既存のペアワイズおよびリストワイズアプローチよりも優れています。
論文 参考訳(メタデータ) (2024-10-06T03:49:28Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
そこで我々は,LMをベースとした推奨項目の識別を支援するために,ランキング情報をLMに挿入するソフトマックスDPO(S-DPO)を提案する。
具体的には、ユーザの嗜好データに複数の負を組み込んで、LMベースのレコメンデータに適したDPO損失の代替版を考案する。
論文 参考訳(メタデータ) (2024-06-13T15:16:11Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
大きな言語モデル(LLM)を整列させる一般的な手法は、人間の好みを取得することに依存する。
本稿では,命令応答対に対して協調的に好みを抽出する新たな軸を提案する。
また,LLMのアライメントを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
我々は、主に良いアイテムを含むことを厳格に保証されたアイテムのセットを返す方法を示す。
本手法は, 擬似発見率の厳密な有限サンプル制御によるランキングモデルを提供する。
我々はYahoo!のランキングとMSMarcoデータセットの学習方法を評価する。
論文 参考訳(メタデータ) (2022-07-04T17:49:25Z) - A Differentiable Ranking Metric Using Relaxed Sorting Operation for
Top-K Recommender Systems [1.2617078020344619]
推薦システムは、項目の選好スコアを計算し、スコアに応じて項目をソートし、上位K項目を高いスコアでフィルタリングすることで、パーソナライズされたレコメンデーションを生成する。
このレコメンデーション手順にはソートやランキング項目が不可欠ですが、エンドツーエンドのモデルトレーニングのプロセスにそれらを組み込むのは簡単ではありません。
これにより、既存の学習目標とレコメンデータのランキングメトリクスの矛盾が生じる。
本稿では,この不整合を緩和し,ランキングメトリクスの微分緩和を利用してレコメンデーション性能を向上させるDRMを提案する。
論文 参考訳(メタデータ) (2020-08-30T10:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。