論文の概要: Cross-Validated Off-Policy Evaluation
- arxiv url: http://arxiv.org/abs/2405.15332v2
- Date: Mon, 27 May 2024 07:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:49:28.268537
- Title: Cross-Validated Off-Policy Evaluation
- Title(参考訳): 相互Validated Off-Policy評価
- Authors: Matej Cief, Branislav Kveton, Michal Kompan,
- Abstract要約: 政治以外の評価にクロスバリデーションをどう使うかを示す。
このことは、非政治評価におけるクロスバリデーションが実現不可能であるという一般的な信念に挑戦する。
- 参考スコア(独自算出の注目度): 13.733459243449634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the problem of estimator selection and hyper-parameter tuning in off-policy evaluation. Although cross-validation is the most popular method for model selection in supervised learning, off-policy evaluation relies mostly on theory-based approaches, which provide only limited guidance to practitioners. We show how to use cross-validation for off-policy evaluation. This challenges a popular belief that cross-validation in off-policy evaluation is not feasible. We evaluate our method empirically and show that it addresses a variety of use cases.
- Abstract(参考訳): 本稿では,オフ政治評価における推定器選択とハイパーパラメータチューニングの問題について検討する。
クロスバリデーションは教師付き学習において最も一般的なモデル選択法であるが、オフ政治評価は主に理論に基づくアプローチに依存しており、実践者への限られた指導しか提供しない。
政治以外の評価にクロスバリデーションをどう使うかを示す。
このことは、非政治評価におけるクロスバリデーションが実現不可能であるという一般的な信念に挑戦する。
提案手法を実証的に評価し,様々なユースケースに対処することを示す。
関連論文リスト
- Bootstrapping the Cross-Validation Estimate [3.5159221757909656]
クロスバリデーションは予測モデルの性能を評価するために広く用いられている手法である。
見積もりに関連する不確実性を正確に定量化することが不可欠である。
本稿では,クロスバリデーション推定の標準誤差を迅速に推定する高速ブートストラップ法を提案する。
論文 参考訳(メタデータ) (2023-07-01T07:50:54Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
産業レコメンデーションシステムにとって重要なニーズは、製品にデプロイする前に、レコメンデーションポリシーをオフラインで評価する機能である。
我々は、最も人気のある2つの非政治推定器の問題を緩和する新しい推定器を開発する。
特に、InterPOLと呼ばれる新しい推定器は、潜在的に不特定位置ベースモデルのバイアスに対処する。
論文 参考訳(メタデータ) (2022-10-15T17:22:30Z) - Evaluating the Predictive Performance of Positive-Unlabelled
Classifiers: a brief critical review and practical recommendations for
improvement [77.34726150561087]
Positive-Unlabelled (PU) 学習は機械学習の領域として成長している。
本稿では、PU分類器を提案する51の論文において、主要なPU学習評価手法と予測精度の選択について批判的にレビューする。
論文 参考訳(メタデータ) (2022-06-06T08:31:49Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Bootstrapping Statistical Inference for Off-Policy Evaluation [43.79456564713911]
オフ政治評価(OPE)におけるブートストラップの利用について検討する。
本稿では,政策評価誤差の分布を推定するブートストラップFQE法を提案し,この手法が政治外の統計的推測に有効で一貫性があることを示す。
我々は,古典的RL環境におけるブートラッピング手法の評価を行い,信頼区間推定,オフポリチック評価器のばらつきの推定,複数オフポリチック評価器の相関性の推定を行った。
論文 参考訳(メタデータ) (2021-02-06T16:45:33Z) - Adaptive Estimator Selection for Off-Policy Evaluation [48.66170976187225]
オフポリシー評価設定における推定器選択のための汎用的データ駆動手法を開発した。
また,本手法の性能保証を確立し,オラクル推定器と競合することを示す。
論文 参考訳(メタデータ) (2020-02-18T16:57:42Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
強化学習におけるオフ政治評価は、医療や教育などの領域における将来の成果を改善するために観察データを使用する機会を提供する。
信頼区間のような従来の尺度は、ノイズ、限られたデータ、不確実性のために不十分である可能性がある。
我々は,人間専門家が政策評価評価評価の妥当性を分析できるように,ハイブリッドAIシステムとして機能する手法を開発した。
論文 参考訳(メタデータ) (2020-02-10T00:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。