E(n) Equivariant Topological Neural Networks
- URL: http://arxiv.org/abs/2405.15429v4
- Date: Thu, 03 Oct 2024 17:44:27 GMT
- Title: E(n) Equivariant Topological Neural Networks
- Authors: Claudio Battiloro, Ege Karaismailoğlu, Mauricio Tec, George Dasoulas, Michelle Audirac, Francesca Dominici,
- Abstract summary: Graph neural networks excel at modeling pairwise interactions, but they cannot flexibly accommodate higher-order interactions and features.
Topological deep learning (TDL) has emerged recently as a promising tool for addressing this issue.
This paper introduces E(n)-Equivariant Topological Neural Networks (ETNNs)
ETNNs incorporate geometric node features while respecting rotation, reflection, and translation.
- Score: 10.603892843083173
- License:
- Abstract: Graph neural networks excel at modeling pairwise interactions, but they cannot flexibly accommodate higher-order interactions and features. Topological deep learning (TDL) has emerged recently as a promising tool for addressing this issue. TDL enables the principled modeling of arbitrary multi-way, hierarchical higher-order interactions by operating on combinatorial topological spaces, such as simplicial or cell complexes, instead of graphs. However, little is known about how to leverage geometric features such as positions and velocities for TDL. This paper introduces E(n)-Equivariant Topological Neural Networks (ETNNs), which are E(n)-equivariant message-passing networks operating on combinatorial complexes, formal objects unifying graphs, hypergraphs, simplicial, path, and cell complexes. ETNNs incorporate geometric node features while respecting rotation, reflection, and translation equivariance. Moreover, ETNNs are natively ready for settings with heterogeneous interactions. We provide a theoretical analysis to show the improved expressiveness of ETNNs over architectures for geometric graphs. We also show how E(n)-equivariant variants of TDL models can be directly derived from our framework. The broad applicability of ETNNs is demonstrated through two tasks of vastly different scales: i) molecular property prediction on the QM9 benchmark and ii) land-use regression for hyper-local estimation of air pollution with multi-resolution irregular geospatial data. The results indicate that ETNNs are an effective tool for learning from diverse types of richly structured data, as they match or surpass SotA equivariant TDL models with a significantly smaller computational burden, thus highlighting the benefits of a principled geometric inductive bias.
Related papers
- Higher-Order Topological Directionality and Directed Simplicial Neural Networks [12.617840099457066]
We introduce a novel notion of higher-order directionality and we design Directed Simplicial Neural Networks (Dir-SNNs) based on it.
Dir-SNNs are message-passing networks operating on directed simplicial complexes.
Experiments on a synthetic source localization task demonstrate that Dir-SNNs outperform undirected SNNs when the underlying complex is directed.
arXiv Detail & Related papers (2024-09-12T20:37:14Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - Topological Neural Networks go Persistent, Equivariant, and Continuous [6.314000948709255]
We introduce TopNets as a broad framework that subsumes and unifies various methods in the intersection of GNNs/TNNs and PH.
TopNets achieve strong performance across diverse tasks, including antibody design, molecular dynamics simulation, and drug property prediction.
arXiv Detail & Related papers (2024-06-05T11:56:54Z) - On the Completeness of Invariant Geometric Deep Learning Models [22.43250261702209]
Invariant models are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds.
We show that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks (subgraph GNNs), can effectively break these corner cases' symmetry.
By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness.
arXiv Detail & Related papers (2024-02-07T13:32:53Z) - Torsion Graph Neural Networks [21.965704710488232]
We propose TorGNN, an analytic torsion enhanced Graph Neural Network model.
In our TorGNN, for each edge, a corresponding local simplicial complex is identified, then the analytic torsion is calculated.
It has been found that our TorGNN can achieve superior performance on both tasks, and outperform various state-of-the-art models.
arXiv Detail & Related papers (2023-06-23T15:02:23Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible neural networks (INNs) are neural network architectures with invertibility by design.
Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning.
arXiv Detail & Related papers (2022-04-15T10:45:26Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.