論文の概要: Efficient Degradation-aware Any Image Restoration
- arxiv url: http://arxiv.org/abs/2405.15475v1
- Date: Fri, 24 May 2024 11:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 14:32:33.222357
- Title: Efficient Degradation-aware Any Image Restoration
- Title(参考訳): 画像復元の効率化
- Authors: Eduard Zamfir, Zongwei Wu, Nancy Mehta, Danda Dani Paudel, Yulun Zhang, Radu Timofte,
- Abstract要約: 我々は,低ランク体制下での学習者(DaLe)を用いた効率的なオールインワン画像復元システムである textitDaAIR を提案する。
DaAIRは多種多様な劣化の側面と微妙なニュアンスを共同で掘り下げ、劣化を認識した埋め込みを生成する。
- 参考スコア(独自算出の注目度): 71.31254072581135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing missing details from degraded low-quality inputs poses a significant challenge. Recent progress in image restoration has demonstrated the efficacy of learning large models capable of addressing various degradations simultaneously. Nonetheless, these approaches introduce considerable computational overhead and complex learning paradigms, limiting their practical utility. In response, we propose \textit{DaAIR}, an efficient All-in-One image restorer employing a Degradation-aware Learner (DaLe) in the low-rank regime to collaboratively mine shared aspects and subtle nuances across diverse degradations, generating a degradation-aware embedding. By dynamically allocating model capacity to input degradations, we realize an efficient restorer integrating holistic and specific learning within a unified model. Furthermore, DaAIR introduces a cost-efficient parameter update mechanism that enhances degradation awareness while maintaining computational efficiency. Extensive comparisons across five image degradations demonstrate that our DaAIR outperforms both state-of-the-art All-in-One models and degradation-specific counterparts, affirming our efficacy and practicality. The source will be publicly made available at \url{https://eduardzamfir.github.io/daair/}
- Abstract(参考訳): 劣化した低品質インプットから欠落した詳細を再構築することは、大きな課題となる。
画像復元の最近の進歩は、様々な劣化に同時に対処できる大規模モデルの学習の有効性を実証している。
それにもかかわらず、これらの手法は計算オーバーヘッドと複雑な学習パラダイムを導入し、実用性を制限している。
そこで本研究では,低階の学習者(DaLe)を用いた効率的なオールインワン画像復元システムである「textit{DaAIR}」を提案し,多種多様な劣化にまたがる相や微妙なニュアンスを共同でマイニングし,劣化認識の埋め込みを生成する。
モデルキャパシティを入力劣化に動的に割り当てることにより、総合的および特定の学習を統一モデルに統合した効率的な復元器を実現する。
さらに、DaAIRは、計算効率を維持しながら劣化認識を高めるコスト効率の高いパラメータ更新機構を導入している。
5つの画像劣化を総合的に比較すると、DaAIRは最先端のオールインワンモデルと分解特異的モデルの両方に優れており、有効性と実用性が確認されている。
ソースは \url{https://eduardzamfir.github.io/daair/} で公開されます。
関連論文リスト
- Efficient Transformer for High Resolution Image Motion Deblurring [0.0]
本稿では,高分解能イメージモーションデブロアに対するRestormerアーキテクチャの総合的研究と改良について述べる。
モデル複雑性を18.4%削減し、最適化された注意機構によって性能を維持または改善するアーキテクチャ変更を導入する。
以上の結果から, 思考的アーキテクチャの単純化と学習戦略の強化が組み合わさって, より効率的かつ等しく機能的な作業モデルが得られることが示唆された。
論文 参考訳(メタデータ) (2025-01-30T14:58:33Z) - UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity [79.90839080916913]
We present our UniRestorer with improve restoration performance。
具体的には、劣化空間上で階層的クラスタリングを行い、マルチグラニュラリティ・ミックス・オブ・エキスパート(MoE)復元モデルを訓練する。
UniRestorerは、既存の劣化診断法と -aware 法とは対照的に、劣化推定を利用して劣化特定回復の恩恵を受けることができる。
論文 参考訳(メタデータ) (2024-12-28T14:09:08Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
本稿では,デコーダのみを用いた変圧器を用いた自己回帰モデルの圧縮に着目する。
具体的には,ニュートン法とモジュールの数値スコアをそれぞれ計算する学習自由プルーニング法を提案する。
提案手法の有効性を検証するため,理論的支援と広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-12-17T01:09:23Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - Distillation of Diffusion Features for Semantic Correspondence [23.54555663670558]
本稿では,効率の低下を克服する新しい知識蒸留手法を提案する。
本稿では,2つの大きな視覚基盤モデルを用いて,これらの補足モデルの性能を,計算コストの低減で高精度に維持する1つの小さなモデルに蒸留する方法を示す。
実験結果から,3次元データ拡張による蒸留モデルにより,計算負荷を大幅に削減し,セマンティックビデオ対応などの実世界のアプリケーションの実現性を向上させるとともに,現在の最先端手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-12-04T17:55:33Z) - Hierarchical Information Flow for Generalized Efficient Image Restoration [108.83750852785582]
画像復元のための階層型情報フロー機構であるHi-IRを提案する。
Hi-IRは、劣化した画像を表す階層的な情報ツリーを3段階にわたって構築する。
7つの共通画像復元タスクにおいて、Hi-IRはその有効性と一般化性を達成する。
論文 参考訳(メタデータ) (2024-11-27T18:30:08Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
複数の画像劣化課題に対処する新しいデータ成分指向手法を提案する。
具体的には、エンコーダを用いて特徴をキャプチャし、デコーダを誘導するための劣化情報を含むプロンプトを導入する。
我々の手法は最先端技術と競争的に機能する。
論文 参考訳(メタデータ) (2023-09-06T15:05:04Z) - Rich Feature Distillation with Feature Affinity Module for Efficient
Image Dehazing [1.1470070927586016]
この作業は、単一イメージのヘイズ除去のためのシンプルで軽量で効率的なフレームワークを導入します。
我々は、ヘテロジニアス知識蒸留の概念を用いて、軽量な事前学習された超解像モデルから豊富な「暗黒知識」情報を利用する。
本実験は, RESIDE-Standardデータセットを用いて, 合成および実世界のドメインに対する我々のフレームワークの堅牢性を示す。
論文 参考訳(メタデータ) (2022-07-13T18:32:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。