論文の概要: Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers
- arxiv url: http://arxiv.org/abs/2410.08688v1
- Date: Fri, 11 Oct 2024 10:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:25:15.674888
- Title: Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers
- Title(参考訳): Chain-of-Restoration:マルチタスク画像復元モデルはゼロショットステップバイステップユニバーサル画像復元器である
- Authors: Jin Cao, Deyu Meng, Xiangyong Cao,
- Abstract要約: これは、モデルを一連の劣化ベースでトレーニングし、これらのベースがゼロショットで構成できる可能性のある劣化を除去する、新しいタスク設定である。
段階的に問題に対処するLLMに着想を得たCoR(Chain-of-Thought)を提案する。
CoRは、未知の複合劣化を段階的に除去するようモデルに指示する。
- 参考スコア(独自算出の注目度): 53.298698981438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite previous works typically targeting isolated degradation types, recent research has increasingly focused on addressing composite degradations which involve a complex interplay of multiple different isolated degradations. Recognizing the challenges posed by the exponential number of possible degradation combinations, we propose Universal Image Restoration (UIR), a new task setting that requires models to be trained on a set of degradation bases and then remove any degradation that these bases can potentially compose in a zero-shot manner. Inspired by the Chain-of-Thought which prompts LLMs to address problems step-by-step, we propose the Chain-of-Restoration (CoR), which instructs models to step-by-step remove unknown composite degradations. By integrating a simple Degradation Discriminator into pre-trained multi-task models, CoR facilitates the process where models remove one degradation basis per step, continuing this process until the image is fully restored from the unknown composite degradation. Extensive experiments show that CoR significantly improves model performance in removing composite degradations, achieving results comparable to or surpassing those of State-of-The-Art (SoTA) methods trained on all degradations. The code will be released at https://github.com/toummHus/Chain-of-Restoration.
- Abstract(参考訳): 従来の研究は孤立分解型を対象としていたが、最近の研究は、複数の孤立分解の複雑な相互作用を含む複合劣化への対処に重点を置いている。
本論文では, 劣化の可能性のある組み合わせの指数的な数によって生じる課題を認識し, モデルに一連の劣化基盤をトレーニングし, それらの基盤がゼロショットで構成できるような劣化を除去する, 新しいタスク設定である, ユニバーサルイメージ復元(UIR)を提案する。
そこで本研究では, LLM を段階的に解決する Chain-of-Thought (Chain-of-Thought) に着想を得て, モデルに未知の複合劣化を段階的に除去するよう指示する Chain-of-Restoration (CoR) を提案する。
単純な劣化判別器を事前訓練されたマルチタスクモデルに統合することにより、CoRはモデルがステップ毎に1つの劣化基準を除去し、未知の複合劣化から画像が完全に復元されるまでこのプロセスを継続するプロセスを促進する。
大規模な実験により,CoRは複合劣化を除去する際のモデル性能を著しく向上し,全ての劣化を訓練したSoTA(State-of-The-Art)法に匹敵する結果を得た。
コードはhttps://github.com/toummHus/Chain-of-Restorationでリリースされる。
関連論文リスト
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - UIR-LoRA: Achieving Universal Image Restoration through Multiple Low-Rank Adaptation [50.27688690379488]
既存の統合手法は、マルチタスク学習問題として、多重劣化画像復元を扱う。
本稿では,複数のローランクアダプタ(LoRA)をベースとした汎用画像復元フレームワークを提案する。
本フレームワークは, 学習前の生成モデルを多段劣化復元のための共有コンポーネントとして利用し, 特定の劣化画像復元タスクに転送する。
論文 参考訳(メタデータ) (2024-09-30T11:16:56Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
現実のシナリオでは、画像障害はしばしば複合的な劣化として現れ、低光、迷路、雨、雪といった要素の複雑な相互作用を示す。
本研究では, 複雑な複合劣化シナリオを正確に表現するために, 4つの物理劣化パラダイムを統合した多目的イメージングモデルを提案する。
OneRestoreは、適応的で制御可能なシーン復元のために設計された新しいトランスフォーマーベースのフレームワークである。
論文 参考訳(メタデータ) (2024-07-05T16:27:00Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance [12.066756224383827]
textbfRestorerはトランスフォーマーベースのオールインワン画像復元モデルである。
追加のトレーニングを必要とせずに、現実世界のシナリオで複合的な劣化を処理することができる。
推論中は効率が良く、現実世界の応用の可能性も示唆している。
論文 参考訳(メタデータ) (2024-06-18T13:18:32Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
画像復元モデルの一般化を改善するための代替手法を提案する。
ローカル,グローバル,チャネル表現ベースをキャプチャするマルチブランチ設計のMixture-of-Experts (MoE) であるAdaptIRを提案する。
我々のAdaptIRは、単一劣化タスクにおける安定した性能を実現し、8時間間、微調整はわずか0.6%のパラメータしか持たず、ハイブリッド劣化タスクにおいて優れる。
論文 参考訳(メタデータ) (2023-12-12T14:27:59Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
オールインワンVRのためのクロスコンセントディープ・アンフォールディング・ネットワーク(CDUN)を提案する。
2つのカスケード手順を編成することにより、CDUNは様々な劣化に対する適応的な処理を達成する。
さらに、より隣接するフレームからの情報を活用するために、ウィンドウベースのフレーム間融合戦略を導入する。
論文 参考訳(メタデータ) (2023-09-04T14:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。